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Abstract

Neoclassical transport for large helical device (LHD) configurations is studied by solving the bounce-averaged

Fokker-Planck equation. Numerical code employed in the present paper (CHD1) is much faster and more efficient

than existing transport codes. Effects of the magnetic axis shift on the mono-energetic transport coefficients are studied

in detail for the LHD configurations, revealing that a strong inward shift of the magnetic axis can reduce remarkably

the neoclassical ripple transport.
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1. Introduction

During more than two decades, a number of analytical
and numerical approaches have been developed to study the
neoclassical transport in toroidal helical systems. Analytical
descriptions of neoclassical transport are effective because
they give clear physical insight associated with various
transport and/or loss mechanisms. However, the derivation of
the most of these analytical formulae are originally based on
a number of assumptions such as so-called frequency
ordering, which leads somewhat disconnected expressions for
the transport coefficients in different collisionality regimes.
On the other hand, lots of numerical methods have been
discussed to avoid some of these assumptions and to
determine the transport coefficients over the wide range of
collisionality regime. Among these studies there are the
Monte-Calro simulations [1,2], the methods based on the
bounce-averaged Fokker-Planck equation, namely, FPSTEL
[3], FLOCS [4], and numerical code by solving the drift
kinetic equation, DKES [5]. A general solution of the ripple-
averaged kinetic equation; GSRAKE is also developed [6].
The GSRAKE makes it possible to analyze the cases
including the contributions due to E X B and VB drifts without
the assumption, 2,z >> Qyp.

An analytic representation based on the longitudinal
adiabatic invariant for the general magnetic configuration
instead of a simple model magnetic field frequently employed,
has been presented in a convenient form for the purpose of
numerical calculation in realistic magnetic configurations [7].
In the previous studies [8,9], a neoclassical transport in a
helical torus based on the bounce averaged Fokker-Planck
equation has been developed by using the generalized bounce-

averaged orbit theory mentioned above. The reduction of
neoclassical transport, particularly in the low collisionality
region is one of the most important issues for any reactor
scale heliotron devices. In the previous paper [10], the effect
of radial electric field on neoclassical transport has also been
analyzed in detail when a boundary layer and/or resonance
are present. Furthermore, great efforts have been undertaken
to optimize magnetic configurations associated with the
reduction of neoclassical transport [7,11]. In this paper, we
study the neoclassical transport in typical configurations such
as inward-shifted configuration of LHD device by solving the
bounce averaged Fokker-Planck equation (CHDI1). In the
present study the magnetic field are calculated by using the
MAGN code for fixed coil currents. Then, the transport
coefficients are evaluated for a realistic magnetic field relevant
to the operation parameters of the LHD experiment.

The bounce-averaged Fokker-Planck equation together
with the numerical code (CHD1) is presented in Section 2. In
section 3, the numerical results of the transport for the LHD
configuration are presented. The last section is devoted to the
summary and discussions.

2. Bounce-averaged kinetic equation
Considerable efforts have been paid on the bounce-
averaged drift kinetic equation to describe the neoclassical
particle and energy transport in toroidal helical systems. Since
both fast and slow drift motions are involved in the toroidal
helical systems, some time average is frequently employed in
the formalism. The time average is usually performed over
the periodic bounce motion of particle trapped within local
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ripples of helical magnetic field. Recently, the definition of
time average is extended to so-called “ripple average” in
which the average is taken over a characteristic time for
particles to traverse a local ripple regardless of whether a
particles bounces or not. To discuss this formalism, we here
employ the Boozer’s coordinates (y, ¢}, ¢), ¥ being the
toroidal flux. We consider the helical torus with toroidal
period N and the rotational transform per period is assumed
to be small, 1/N < 1. Namely, ¥ and all functions of this
variable are considered constant with respect to the time
average and the average is carried out along ¢. The motion
of charged particles in case of this assumption is described
by the longitudinal adiabatic invariant

JE 0)—L§Pd¢ Py =y 2 ey, (1)
’u’l//’ 27[ ] > L /A B W(p

The explicit adiabatic invariant forms for ripple trapped and
passing particles are given in Refs. [7,10]. Hence, we can
write the averaged kinetic equation in the form
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where C is the bounce averaged collision operator. Here, the
contribution from the toroidal loop voltage V is also included
in Eq. (2) and o = %1 corresponds to the sign of the parallel
velocity for passing particles.

We now put f = fy(K, W) [1 + (K, A, 0, y, ¥)], where K
is the kinetic energy, i is the magnetic moment and f; is the
local Maxwellian with density n(y) and temperature 7(y), and
introduce the even part A* and the odd part &~ of & with
respect to the sign of parallel velocity, where i* = [h(c = 1)
+ h(o=-1)]/2 and h™ = [h(0o = 1) — h(o = —-1)]/2. Then, the
linearized equation can be written in the following form
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Here, only the pitch angle scattering term, which is dominant
particularly in the low collisionality region is retained in the
collision operator. Also, the 1¥-dependent part of dJ/dK is kept
in the D operator for the sake of the conservation law. The
numerical scheme to solve Egs. (3) and (4) has been discussed
in the previous paper [7]. After solving Eqgs. (3) and (4), the
transport coefficients are represented by the following
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relations,
Dyj o< (S h°), Dy o< (S™5, 1), (a,b) = Jabdz, (7)

where *(9) = (W*(9) + h*(-®)/2 and S5 = (WP -
h*(=1%))/2. We note that D, and D5 correspond to the particle
transport coefficient and the bootstrap current, respectively.

3. Effect of magnetic axis shift

In the previous paper [7], the dependence of the particle
confinement on the magnetic axis shift, the shaping of
magnetic surface and the pitch modulation of helical windings
has been discussed for a LHD geometry. It is recently shown
in [2] that the diffusion coefficients of the inward shifted
configuration are about three to ten times smaller than those
of standard configuration of LHD. In this paper, we used a
magnetic field calculated by the MAGN code for the LHD
parameters. We here consider three configurations with
inwardly shifted magnetic axis from the center characterized
by A(= 0 cm, —10 cm, —20 cm). The radial profiles of the
Fourier spectrum of magnetic field in the magnetic coordinate
are shown in Fig. 1 for typical three configurations (0 cm,
—10 cm, =20 cm). As was shown in Fig. 1, the magnetic field
components such as &/'(p), &(p), &'7'(p), &*'(p) and &,2(p)
change the radial profiles by shifting the magnetic axis
inwardly. In particular, the components with (1,10) and (3,10)
change both its strength and polarity, and it may reduce
effectively the helical ripple strength, leading a significant
reduction of neoclassical transport. Typical results for the
collisionality dependence of the diffusion coefficient (D,;) and
the bootstrap current (D;3) in the case of the LHD three
configurations with inwardly shifted magnetic axis are plotted
in Fig. 2 (a) and Fig. 2 (b) for fixed value of normalized
electric field, Rwg/v. The parameters used in the calculations
are p(=rla) =0.5, By =3 T, 1=0.48, & =0.074, and ¢, =
0.059, and Rwx/v = 1.0 x 107. Here, we note that the results
for the case of A =-20 cm as shown in Fig. 2 corresponds to
the results for Rwg/v = 1.0 x 107 in Fig. 1 of Ref. [10]. It is
found from Fig. 2 (a) that the diffusion coefficient decreases
as the magnetic axis is shifted inwardly. The result for A =
—20 cm is smaller about 4 times than the result for A =0 cm
in the 1/v region but the difference between these three cases
becomes smaller in the further low collisionality regime, so
called v-regime. As was discussed in Refs. [2] and [10], the
effect of radial electric field dominates the transport more than
the effect of magnetic axis shift provided the electric field is
large enough. Also, the local maximum of the diffusion
coefficient is shifted toward lower collisionality regime as A
increased. Figure 2 (b) indicates that the bootstrap current
does not monotonically increases as the collision frequency
decreases and it saturates with the local maximum at some
collision frequency (at the transition). This transition point
sensitively depends on the electric field strength and it is also
shifted toward low collisionality region as A increased. The
bootstrap current increases in the plateau and 1/v regions but
decreases in the low collisionality regime so called v-regime
as A increased. It should be noted that the peaked profile of
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Fig. 1 Radial profiles of magnetic field spectra in vacuum con-

figurations. (a) A =0 cm , (b) =10 cm, and (c) =20 cm.
Here, epsh, epst, epsh-, epsh+ and epsh-- indicate &,(p),
£(p), & (p), &' (p) and g,2(p), respectively.

D5 around the maximum as indicated by the solid line in
Fig. 2(b) contains somewhat ambiguity because there are no
explicit data around the transition point in this figure.

4. Summary and discussions
The theory and numerical code solving the bounce
averaged Fokker-Planck equation has been developed in two
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Fig. 2 Collisionality dependence of the diffusion coefficient
(D;) [2(a)] and the bootstrap current (D,;), [2(b)] for A =
0cm,-10 cm and =20 cm.

dimensional space (A, ©¥). As for the numerical scheme, the
function in the ¥-direction is expressed in terms of Fourier
expansion, and the meshes with variable distances are
concentrated in the boundary layer. So, the structure of the
solution near the boundary layer and the case of helical and/
or toroidal resonances can be well analyzed as shown in
Ref. [10]. A symmetric band matrix solver is used. Then, the
computation time is dramatically reduced, particularly, in the
low collisionality region compared with the case of DKES
code. On the basis of this improvement of the numerical
scheme, the calculation can be extendable over wide range of
collision frequency, especially in the very low collisionality
region as shown in Fig. 2, compared with the previous studies
[2,11]. Although the relation 2,z >> Qy; is assumed in the
DKES code, there is no such limitation in CHD1 code, which
is discussed, in the present study. Detailed and realistic
discussions associated with the effects of the magnetic axis
shift and the electric field on the transport of the LHD
configuration in low collisionality region will be discussed in
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a separate paper. In finite beta plasmas, the deformation of
the magnetic surface due to the Pfirsch-Schluter current may
degradate the particle confinement. Discussions on this
problem await further investigations.
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