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Abstract

A model equation for ballooning modes in toroidally rotating tokamaks is derived. It is confirmed that the model
equation is appropriate for analyzing the stabilization mechanism of the ballooning modes by comparing the numerical
solutions of the model equation with those of the original ballooning equations.
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1. Introduction

In the H-mode [1] pedestal region, the reachable pressure
gradient is often limited by magnetohydrodynamic (MHD)
activities, called edge localized modes (ELMs) [2]. One of
the causes of the ELMs is considered to be ideal (non-
dissipative) MHD ballooning instabilities [2]. Thus the linear
stability analysis of the ballooning mode [3,4] has been a
crucial issue in tokamak fusion research.

Plasmas in the pedestal region of tokamaks often rotate.
The plasma rotation affects linear stability of MHD
ballooning modes. It was numerically found that toroidal
rotation shear stabilizes ideal MHD high-n ballooning modes
(n: toroidal mode number) [5-8]. We found that the toroidal
rotation shear damps the perturbation energy of the ballooning
modes, which results in the stabilization of the mode [8].
However, it has not been clarified how the toroidal rotation
shear damps the perturbation energy.

An analytical study may clearly show the damping
mechanism of perturbation energy, however, the ballooning
equations [6] solved numerically in ref. [8] are too
complicated to analyze; they are coupled wave equations for
two components of the displacement vector. Here, we will
derive a model equation which is a wave equation for one
variable. We will also solve the model equation numerically,
and compare the solutions with those of the original
ballooning equations. It will be shown that the model equation
is appropriate for analyzing the damping mechanism of the
perturbation energy of ballooning modes.

In Sec. 2, the model equation is derived by simplifying
the original ballooning equations. In Sec. 3, numerical

solutions of the model equation are compared with those of
the original ballooning equations. Summary is given in
Sec. 4.

2. Derivation

In this Section, we derive a model equation appropriate
for analyzing the damping mechanism of the perturbation
energy of ballooning modes.

It was numerically shown that toroidal rotation shear
stabilizes ballooning modes even in the incompressible limit
[5,7]. Thus, we adopt the incompressible model. The
incompressible ballooning equations are obtained by taking
the variation of the action with a constraint: the action is

I ≡ dt d3x (T – V + λ W ) ,

where

T ≡ ρ dξξ
dt

2

,

V ≡ – ξξ* ⋅ F (ξξ) ,

W ≡ ∇⋅ ξξ 2
,

F (ξξ) ≡ 1
µ0

∇× Q × B+ ∇× B × Q

+ ∇ γ p∇⋅ ξξ + ξξ ⋅∇p + ∇⋅ ρξξv ⋅∇v ,

Q ≡ ∇× ξξ × B .

The incompressible condition is imposed by λW, where λ is
a Lagrange multiplier. The displacement vector is ξξ, ρ and p
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are equilibrium mass density and pressure, respectively, γ is a
specific heat ratio, and µ0 is a vacuum permeability. The
equilibriu magnetic field and velocity are B = χ′( χ̂ ) (∇ζ ×
∇χ̂ – q∇χ̂ × ∇θ ) and v = Ω ( χ̂ )eζ , respectively, where
χ̂ ≡ (χ – χaxis)/(χedge – χaxis) is a normalized poloidal flux, χ
is a poloidal flux function, the prime denotes the derivative
with respect to χ̂, θ and ζ are poloidal and toroidal angle,
respectively, q is a safety factor, Ω is a toroidal rotation
frequency, eζ is a covariant basis vector in the toroidal
direction. The operator F is self-adjoint [9].

The displacement vector is expressed in the eikonal form
and expanded by 1/n << 1 as

ξξ = ξξ (0) χ , ϑ , t + 1
n ξξ (1) χ , ϑ , t + ⋅ ⋅ ⋅ einS χ , α , t ,

where S is the eikonal, n is a toroidal mode number, ϑ is an
extended poloidal angle in the covering space, α ≡ ζ – qθ is
a field line label. The eikonal satisfies

B ⋅ ∇S = 0 ,

dS
dt

= 0 .

The wave vector is defined as k̂ ≡ ∇S = ∇ζ – q∇θ – (ϑ – θk

+ Ω⋅ t)∇q, where θk is a ballooning angle and Ω⋅ ≡ dΩ /dq. The
displacement vector in the eikonal form, as well as λ = λ(0) +
λ(1)/n + …, are substituted in the action, then we obtain
incompressible ballooning equations in O (n0);

ρ k
2 ∂2 ξ

⊥
(0)

∂t 2
+ 2ρ k ⋅∇Ω

∂ξ
⊥
(0)

∂t
– 2ρΩ B2 k ⋅ Z

∂ξ
||
(0)

∂t

= B2

µ 0
B ⋅∇

k
2

B2
B ⋅∇ξ

⊥
(0) + 2 B2

µ 0
B × k ⋅ κκ B ⋅∇ξ

||
(0)

–
ρR Ω 2

p B ⋅∇p B × k ⋅ R ξ
||
(0)

+ B × k ⋅ 2
∂p
∂χ R

κκ –
∂ ρ R2Ω 2

∂χ R

R
R

+
2ρΩ

B2
dΩ
dχ B ⋅ Z ∇χ

–
4

µ 0
B × k ⋅ κκ

2

2

–
ρ 2 R2Ω 4

p B2
B × k ⋅ R ξ

⊥
(0) , (1)

ρ B2
∂2 ξ

||
(0)

∂t 2
– 2ρΩ k ⋅ Z

∂ξ
⊥
(0)

∂t
+ 2ρΩ ∇Ω⋅ Z ξ

⊥
(0)

=
1

µ 0
B ⋅∇ B2B ⋅∇ξ

||
(0) – 2 B × k ⋅ κκ ξ

⊥
(0)

–
B ⋅∇p

p B ⋅∇p ξ
||
(0) +

ρR Ω 2

B2
B × k ⋅ R ξ

⊥
(0) . (2)

Here, ξξ̂ (0) = ξ̂⊥
(0)B × k̂/B2 + ξ̂ ||

(0)B, R̂ and Ẑ are unit vectors in
the R and Z direction of a cylindrical coordinate system,
respectively, and κκ ≡ (B/B) · ∇(B/B) is a magnetic curvature.
Equations (1) and (2) are coupled wave equations for ξ̂⊥

(0) and
ξ̂ ||

(0) along the extended poloidal angle. Thus, the
incompressibility does not simplify the ballooning equations
significantly.

Next, we set Ω = 0 in eqs. (1) and (2), since it was shown
that the perturbation energy damps even for Ω = 0 if Ω′ ≠ 0
[7,8]. The resulting equations are

µ0 ρ k
2 ∂2 ξ

⊥

(0)

∂ t2
– 2 k⋅∇ Ω

∂ ξ
⊥

(0)

∂ t

= B2B⋅∇
k

2

B2 B⋅∇ξ
⊥

(0)

+ 2 B× k⋅ κκ µ0

B2 B× k⋅∇p– 2B× k⋅ κκ ξ
⊥

(0)

+ 2 B2 B× k⋅ κκ B⋅∇ξ
||

(0)
, (3)

µ 0 ρ B2
∂2 ξ

||
(0)

∂t 2
= B ⋅∇ B2B ⋅∇ξ

||
(0) – 2 B × k ⋅ κκ ξ

⊥
(0) . (4)

Equations (3) and (4) are much simpler than eqs. (1) and (2),
however, they are still coupled equations for ξ̂⊥

(0) and ξ̂||
(0). This

coupling does not come from the rotation shear. For a static
plasma, we commonly examine the ballooning stability by
solving a second-order differential equation for a
perpendicular component of a ballooning displacement. This
equation is derived from an incompressible part of potential
energy and kinetic energy of only the perpendicular
component of the displacement. When we take a variation of
the potential energy and the kinetic energy of both the
perpendicular and parallel components with imposing the
incompressibility, we obtain coupled equations even for a
static plasma. It is also noted that eqs. (3) and (4) coincide
with the incompressible limit (the specific heat ratio γ is taken
to be infinity) of eqs. (51) and (52) of ref. [4].

Here, we propose to decouple ξ̂ ||
(0) from eq. (3) by

dropping the last two terms in that equation;

µ 0 ρ k
2 ∂2 ξ

⊥
(0)

∂t 2
– 2k ⋅∇ Ω

∂ξ
⊥
(0)

∂t

= B2B ⋅∇
k

2

B2
B ⋅∇ξ

⊥
(0)

+
2µ 0

B2
B × k ⋅ κκ B × k ⋅∇p ξ

⊥
(0) . (5)

The reason why we drop not only 2B2(B × k̂ · κκ )B · ∇ξ̂||
(0) but

also –4(B × k̂ · κκ )2ξ̂ ⊥
(0) is as follows. From eq. (4), the last
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two terms of eq. (3) express kinetic energy of ξ̂||
(0). This means

that we drop kinetic energy of the parallel component of the
displacement. As noted above, the ballooning equation for a
static plasma is derived similarly. Actually, when Ω′ = 0, eq.
(5) coincide with the ballooning equation for a static plasma.
Therefore, eq. (5) nicely connects ballooning modes in a
rotating plasma with those in a static plasma.

3. Numerical solutions

In this Section, we compare numerical solutions of the
model equation (5) with those of the original ballooning
equations including compressibility. At first, we must confirm
that the toroidal rotation shear can stabilize the ballooning
mode even by the model equation. Figure 1 shows the growth
rate γ τA as a function of toroidal rotation shear Ω′τA, where
τA is the Alfvén time. The magnetic shear parameter S and
the pressure gradient parameter α are chosen as follows; (i)
low magnetic shear case S = 0.5 and α = 0.7 and (ii) high
magnetic shear case S = 2 and α = 2. The equilibrium is a
large aspect ratio and circular cross-section tokamak. We
found that the ballooning mode is stabilized by increasing the
toroidal rotation shear in both cases. At several values of Ω′τA,
the growth rate suddenly decreases. Such a behavior of the
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Fig. 1 Growth rate γ τA as a function of toroidal rotation shear
Ω′τA. The ballooning mode is stabilized by increasing
the toroidal rotation shear even by the model equation.
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Fig. 2 Time evolution of perturbation energy ⏐⏐ξ2
⊥⏐⏐. Periodic time evolution with damping phases occurs even by the model

equation.

growth rate was also found in ref. [7].
Figure 2 shows the time evolution of the perturbation

energy ⏐⏐ξ2
⊥⏐⏐ for (a) S = 0.5, α = 0.7 and Ω′ =0.05, (b) S =

0.5, α = 0.7 and Ω′ = 0.2, (c) S = 2, α = 2 and Ω′ = 0.1 and
(d) S = 2, α = 2 and Ω′ = 0.8. In Figs. 2(a), 2(c) and 2(d), we
found the periodic time evolution occurs with damping phases
even by the model equation. Figure 2(b) shows the time
evolution of ⏐⏐ξ2

⊥⏐⏐ for a stable case. The perturbation energy
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⏐⏐ξ2
⊥⏐⏐ damps with oscillations even by the model equation.

4. Summary

We have derived a model equation for analyzing the
mechanism of the damping of perturbation energy of
ballooning modes by toroidal rotation shear. We have
confirmed that the model equation is appropriate for analyzing
the damping mechanism by comparing the numerical
solutions with those of the original ballooning equations. We
speculate that stabilization of ballooning modes by toroidal
rotation shear originates from both (i) the time dependence
of the coefficients of the model equation and (ii) the
convection term. The mechanism of stabilization will be
reported elsewhere.
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