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Abstract

A database of neoclassical transport coefficients for the Large Helical Device is developed using normalized
mono-energetic diffusion coefficients evaluated by Monte Carlo simulation code; DCOM. A neural network fitting
method is applied to take energy convolutions with the given distribution function, e.g. Maxwellian. The database
gives the diffusion coefficients as a function of the collision frequency, the radial electric field and the minor radius
position.
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1. Introduction

Because of the radial drift motions of helical trapped
particles, the neoclassical transport increases as the collision
frequency decreases (1/ν regime) in the long-mean-free-path
(LMFP) regime in heliotrons. The neoclassical transport
would play an important role as well as the anomalous
transport in fusion plasma, where the confinement of high
temperature plasma is required. Also, recent LHD experiment
results suggest a key role of the neoclassical transport in the
electron internal transport barrier [1] formation to determine
radial electric field.

The estimate of the neoclassical transport coefficient is
an important issue, and many studies have been done to
evaluate the neoclassical transport coefficient analytically and
numerically in helical systems. Among them the DKES (Drift
Kinetic Equation Solver) code [2,3] has been commonly used
for the experimental data analysis [4,5] and for theoretical
predictions [6,7]. However, in the LMFP regime, a large
number of Fourier modes must be used for the distribution
function and a convergence problem can be seen.

Monte Carlo method is also used to evaluate the
neoclassical transport coefficient, where the diffusion
coefficients are estimated by the radial diffusion of test
particles. This method does not have a convergence problem
and is more applicable in the LMFP regime. Owing to above,

we have developed the DCOM (Diffusion COeficient
calculator by Monte carlo method) code [8].

The calculation of the mono-energetic diffusion
coefficient using the Monte Carlo method, however, takes
very long time. Since the neoclassical diffusion coefficient
depends on the radial position, the radial electric field, and
the collision frequency, it is difficult to calculate whenever
those parameters change.

All the elements of the transport matrix can be obtained
from the convolution of Maxwellian distribution function with
three different mono-energetic coefficients [9];
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where k = e, i (for electrons or ions) and j = 1, 2, 3 (related
to the diffusion, the bootstrap current and parallel resistivity),
DP is the tokamak plateau value of mono-energetic case, DP

= (π /16)(υ3/ιRωc
2), R is the major magnetic radius, υ is the

velocity of test particles, ι is the rotational transform
normalized by 2π, ωc is cyclotron frequency of test particles,
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ν* is the collision frequency normalized by vι/R, vth is the
thermal velocity, D* is the diffusion mono-energetic
coefficient normalized by Dp , G is the normalized radial
electric field, G = (R/ιr)(Er/υB), which measures the effect
of the poloidal rotation induced by the radial electric field to
the poloidal rotation of circulating particles, r is the minor
radial position, Er is the radial electric field and B is the
magnetic field strength. In order to calculate the transport
coefficient for Maxwellian distribution, it is necessary to
interpolate the mono-energetic diffusion coefficient calculated
by DCOM code. A conventional fitting method assuming the
common analytical relations depending on each collisionality
regimes with their matching conditions, has been used so far.
However, this technique can’t describe accurately the
overlapping of the each collisionality regimes.

Recently, the technique of neural networks (NNW) [10],
that has strong nonlinear and has high fitting abilities have
become a center of attraction. The NNW has their origins in
studies of the brain, and has been the subject of active
research since the mid 1940’s. In the last few years in
particular, the NNW has been used to solve a large range of
practical problems in many areas of physics and engineering.
It is appropriate to use the NNW for the interpolation of the
diffusion coefficient in LHD.

In this paper, we show the neoclassical transport database
for LHD using NNW fitting method. The evaluation of the
mono-energetic diffusion coefficients by DCOM code is
explained for the LHD standard configuration (Rax = 3.75 m)
in Sec. 2. In Sec. 3, we have constructed the data base
containing the normalized mono-energetic diffusion
coefficients for several radial points, radial electric field and
collisionalities by using the NNW.

2. Calculation of the monoenergetic

coefficients by Monte Carlo method

The neoclassical transport coefficient has been evaluated
using Monte Carlo technique directly following the particle
orbits. We evaluate a mono-energetic local diffusion
coefficient, D. In the simulation the N monoenergetic particles
are released at an initial minor radial position, r0, where the
particles are randomly distributed in the poloidal, toroidal
coordinates, and in the pitch angle space. The test particle
orbits are followed solving the guiding-center equations in the
Boozer coordinates with 50 Fourier modes of the magnetic
field. The magnetic field in the Boozer coordinates is
constructed from the magnetohydrodynamics (MHD)
equilibrium obtained by the VMEC code. The pitch angle
scatterings are taken into account in the Monte Carlo collision
operator based on the binominal distribution [10]. The pitch
angle scattering after the time interval ∆t is given in terms of
λ(= υ||/υ) by

λ λ ν σ λ νn n nt t+ = −( ) + −⎡
⎣

⎤
⎦1

2
1
2

1 1∆ ∆ ,⎛
⎝

⎞
⎠

where σ  takes +1 or –1 with equal probabilities, ν is the
deflection collision frequency. After several characteristic

times, τ, the diffusion coefficient can be evaluated by taking
the mean square displacement of N particles as
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where ri stands for the radial position of i-th particle, and
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In order to obtain mono-energetic diffusion coefficients,
we have chosen N = 1000 with the energy of 1.0 × 10-3 eV.
The magnetic field is set to be 3 T at the magnetic axis. The
test particles are followed for several collisional times until
the evaluated diffusion coefficient is converged.

In this work, we calculated the normalized mono-
energetic diffusion coefficients; standard LHD configurations,
Rax = 3.75 m, 5 radial positions normalized the minor radius,
ρ = 0.1, 0.25, 0.5, 0.75, 0.9, 14 normalized collisionalities,
3.16 × 10-2 < ν* < 1.00 × 106 and 7 electric fields, 0.00 < G
< 0.03.

The calculation results obtained by DCOM code without
Er are shown by the diagonal cross sign in Fig. 1. The
normalized diffusion coefficients D* as a function of ν* at ρ
= 0.5 in the standard configuration are shown. Shown in Fig.
1 are also the DKES results (cross sign) and analytical results
(dashed line). The results of DCOM and DKES agree well
from Pfirsch-Schlüter (P-S) regime to 1/ν regime for both
configuration cases. The dashed lines represent analytical
result of diffusion coefficient Dana (= Da + D1/ν ) which is the
sum of non-axisymmetric contribution D1/ν  given by a multi-
helicity model [11] and the axisymmetric contribution Da
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Fig. 1 The monoenergetic diffusion coefficient, D* vs the

normalized collision frequency, ν * in standard LHD
configuration, Rax = 3.75 m for different values of
electric potential corresponding to G = 0, 1 × 10-3, 3 ×
10-3, 1 × 10-2, 3 × 10-2, 1 × 10-1 and 3 × 10-1 (crosses,
squares, circles, triangles, down triangles, diamonds
and pentagons, respectively; closed signs are
calculating by DCOM and opened signs are by DKES).
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where υd = υ2/RB2 is the drift velocity of the test particles.
As shown Fig. 1, the correct diffusion coefficient using
analytical results in plateau regime can not be obtained.

Next, we considered the effect of the radial electric field,
Er. In Fig. 1, the diffusion coefficients at ρ = 0.5 are shown
for different amplitude of radial electric field. The open signs
represent the computational results by DKES and the closed
signs represent by DCOM. The strong reductions in the
diffusion coefficients as the radial electric field strengthens
are observed in the 1/ν regime.

3. Construction of the database of the

diffusion coefficient using Neural Net

Work

The diffusion coefficient of LHD has a strong
nonlinearity and is a function of several parameters; ν*, Er,
ρ, Rax, β, and etc. The NNW is suitable for the interpolation
of the nonlinear function which depends on the several
parameters. We consider the most widely used NNW, known
as a multilayer perceptron (MLP), with only one hidden layer,
MLP1 to construct the database of the neoclassical transport.
The outputs of this network yn(n = 1, 2, ...N ) can be written
as a function of its inputs xm(m = 1, 2, ...M) through a set of
coefficients, or weights, {ω1

hm, b1
h, ω2

hn, b2
n}(h = 1,2, ...H), as
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with a sigmoid function f(x) ≡ tanh(x). In this work, the NNW
was constructed as in Fig. 2. The inputs are ν*, G and ρ and
the output is D*. To equate the computational result of
DCOM and output of the NNW, the weights ω have been
corrected. The BFGS (Broyden-Fletcher-Goldfarb-Shanno)
method [12] of the quasi-Newton method was used for this
minimum value search in this study.

The accuracy of the NNW depends on the number of
the hidden unit. The error margin decreases as a number of
the hidden unit increases. However, if the order of the hidden
unit is increased too far, the phenomenon of the overfitting
occurs which gives a very small error with respect to the
training data, but which again gives a poor representation of

the underlying trend in the data and which therefore gives
poor predictions for a new data. Figure 3 shows a plot of the
averaged relative error versus the order of the hidden units.
The results in Fig. 3 decided a number of the hidden unit
was 14.

We can obtain D* by using the NNW for arbitrary ν*, G
and ρ. The NNW results at ρ = 0.5 for Rax = 3.75 m are
shown in Fig. 4. The square symbols represent the
computational results by DCOM with the training of the
NNW and the solid lines represent the outputs from NNW.
The NNW results agree well with DCOM results in each
region of 1/ν, plateau, and P-S, and smooth fitting is done in
the joint of each region. The triangle symbols show the
DCOM results without the training of NNW and the dashed
lines show the results with NNW. It should be noted that the
accuracy of the NNW interpolation with respect to the electric
field is also good.

Figure 5(a) shows contour plot of D*, obtained by the
NNW, at ρ = 0.5. The horizontal axis indicates ν* and the
vertical axis is G. We found that D* does not depend on the
electric field in P-S regime and D* is improved in 1/ν region
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Fig. 2 Schematic view of the MLP1 neural network used in the
calculations of the normalized D*.
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Fig. 3 A plot of the averaged relative error versus the number
of the hidden unit.
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as the electric field strengthens. Figure. 5(b) shows the
contour plot of D* as a function of ν* (horizontal axis) and ρ
(vertical axis). It is seen that the plateau regime has narrowed
as the radial position goes toward outside of the plasma in
each configuration.

4. Summary

We have constructed the database of the neoclassical
transport in LHD. The mono-energetic neoclassical diffusion
coefficients are evaluated numerically using Monte Carlo
technique. We have used a Monte Carlo simulation code,
DCOM, in which the neoclassical diffusion coefficients are
estimated by the radial diffusion of test particles in Boozer
co-ordinates.

In order to take the convolution of mono-energetic
coefficients, D*, with a Maxwellian energy distribution it is

Fig. 5 The normalized monoenergetic coefficients, D* as a function D*(ν*, ρ, G). (a) ρ is constant (ρ = 0.5) and (b) G is constant (G =
0.0).
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Fig. 4 The normalized diffusion coefficient D* vs the
normalized collision frequency ν* at ρ = 0.5. The square
symbols represent the results by DCOM with the
training of the NNW and the solid lines represent the
outputs from NNW. The triangle symbols represent the
DCOM results without the training of NNW and the
dashed lines represent the results with NNW.

necessary to interpolate the values of D* as a function of the
collision frequency, the radial electric field, the minor radius
and etc. The neural network (NNW) is applied to fit the
diffusion coefficient of LHD, which shows complex behavior
in the several collisional regimes; i.e. ν, √⎯ν, 1/ν, plateau, and
P-S regimes. A multilayer perceptron NNW with only one
hidden layer, usually known as MLP1, was used. Input
parameters are ρ, ν* and G, and D* can be obtained as an
output of the NNW.

A single set of D* database can be applicable to the
evaluation of the transport coefficients of one configuration
in any density and temperature parameter plasma. Also, the
NNW database can evaluate the mono-energetic diffusion
coefficient in a very short time and we can evaluate the
neoclassical transport including the ambipolar radial electric
field in a minute using a present PC. On the other hand, the
configuration changes significantly in a finite beta plasma of
LHD and, thus, the construction of D* database in the finite
beta is necessary for accurate evaluation of neoclassical
transport. The database construction in a finite beta is in
progress.
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