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Abstract

The toroidal viscosity determines the neoclassical radial electric field in an axisymmetric tokamak plasma as in
non-axisymmetric systems. This toroidal viscosity is very small and obtained only when the finite orbit width effect is
considered. In the case of uniform temperature (∇T = 0), the wave equation is derived to show the oscillatory behaviour
of the radial electric field. The oscillatory radial electric field converges a steady state which satisfies the satandard
neoclassical relation between the parallel flow and the radial electric field.
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1. Introduction

It is a very important subject to examine what
mechanism determines the radial electric field in toroidal
systems, because the radial electric field plays an important
role for the plasma transport. The radial electric field is
determined by the ambipolar condition : Γe (Er) = Γi (Er),
where Γe and Γi are electron and ion particle fluxes,
respectively, and Er is the radial electric field. The particle
fluxes arise from various physical processes such as
neoclassical transport, anomalous transport, charge exchange,
particle loss out of the confinement region.

In the present paper, we consider only neoclassical
transport to determine the radial electric field in axisymmetric
tokamaks. It is well known, in axisymmetric tokamaks, that
the particle transport is intrinsically ambipolar, which means
that the electron and ion particle fluxes are independent of
the radial electric field, and thus it is not determined.
However, this intrinsically ambipolar condition  holds only in
the lowest order of ε in the drift kinetic equation, where ε =
ρp / L << 1 with ρp the poloidal Larmor radius and L the
characteristic length of the plasma. The standard neoclassical
theory [1,2] holds in this lowest order of ε and thus in the
limit of the small orbit width (SOW) of the plasma particles.
Therefore, to determine the neoclassical radial electric field
Er in an axisymmetric tokamak, the fourth order O(ε 4) of
particle flux must be calculated solving the drift kinetic
equation up to the second order O(ε2). Assuming the constant
termperarure (∇T = 0), Rosenbluth et al. [3] calculated the

fourth order particle flux and obtained the radial electric field
at the steady state. This fourth order particle flux is very small
and attributed to the finite orbit width (FOW) effect.

In the general case of non-zero ∇T, it is difficult to obtain
higher order flux without solving numerically the drift kinetic
equation. To include comprehensively the FOW effect in
studying neoclassical transport, the δ f Monte Carlo method
has been developed [4-11]. Since this method includes
accurately both FOW effect and collisional effect which
ensures the momentum and energy conservations, it is
applicable to the neoclassical transport independent of ε
ordering. Recently, Okamoto et al. [11] calculated the
neoclassical radial electric field in a tokamak plasma with a
flow by using a δ f simultion code which solves
simultaneouslly the drift kinetic equation and the equation for
the time development of the radial electric field. The radial
electric field oscilates with a frequency of the geodesic
acoustic mode and converges to a steady state value.

In the present paper, we derive the wave equation of the
oscilatory electric field in the case of ∇T = 0, assuming that
the radial particle flux is calculated by the δ f simulation. It is
shown that the oscilatory electric field converges and the
resultant steady state radial electric field and the parallel flow
has the same relation with that of the standard neoclassical
theory. It is conjectured that the standard neoclassical
relationship between the radial electric field and the parallel
flow holds even for the plasma with FOW.
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2. Parallel and toroidal viscosities

The equation for momentum balance is given, at the
steady state, by

na ea E + ua × B + Fa – ∇Pa – ∇ ⋅ Πa = 0 (1)

Taking toroidal component (R2∇φ) gives the particle flux in
the radial direction for species a,

Γa ψ ≡ na ua ⋅ ∇ψ = R2 ∇φ ⋅ na ua × B (2)

Γa ψ = – R2 ∇φ ⋅ 1
ea

Fa + naE

+ 1
ea

∇ ⋅ R2 ∇φ ⋅ Πa (3)

It is noted that the relations ∑Fa = 0 (momentum conservation
during the collision), ∑eana = 0 (charge neutrality), and ∑Πa

= 0 (viscosity force balance) hold. Then, ∑eaΓaψ = 0, which
is consistent with vanishing radial current at the steady state.

In the axisymmetric tokamak, the toroidal viscosity is
small due to axisymmetry, which is on the order of O(ε 4) if ε
is small [3], and parallel force balance B

➞

〈B
➞

 · F
➞

a〉 = 〈B
➞

 · ∇ ·
Πa〉 dominates the particle diffusion. Then, in the lowest order,
the relation Γaψ = Γiψ holds independently of the radial
electric field Eψ . This is the intrinsic ambipolarity.

The total particle flux in the radial direction is given,
omitting the subscript ψ, by

 Γ = –Γee – Γei + Γii + Γie (4)

Here, Γee, Γei, Γii, and Γie are radial particle fluxes caused by
electron-electron, electron-ion, ion-ion, and ion-electron
collisions, respectively. In the lowest order, Γei = Γie

independent of Eψ , and Γee is very small compared to Γii,
since the particle fluxes due to self-collisions are attributed
to FOW effects in the axisymmetric tokamak. Γii comes from
the toroidal viscosity Γii = 〈∇ · (R2∇φ · Πa) 〉, which depends
on Eψ . It is concluded that Γii (Eψ ) = 0 determines Eψ .

In non-axisymmetric tori (stellarator, helical system like
LHD), the toroidal viscosity 〈B

➞

t · ∇ · Πa〉 dominates the
particle diffusion over the parallel viscosity and Γeψ (Eψ ) =
Γiψ (Eψ ) determines Eψ .

3. Wave equation

Only ions are treated in the present paper. We consider a
plasma in an axisymmetric tokamak and all the variables
depend only on the radial position ψ and the poloidal angle
θ. In the coordinates (ε, µ, ψ, θ), the drift kinetic equation is
given by [1]

∂f
∂t

+ e
m

∂Φ
∂t

∂f
∂ε + v || + vd ⋅ ∇f = C ( f , f ) (5)

where
➞
v|| is the parallel velocity, 

➞
vd is the drift velocity, and C

is the collision operator. This drift kinetic equation is solved
numerically by the δ f method with two weights [5]. However,
to solve this equation, the equation for the radial electric field
is required.

From Poisson equation and the continuity equation, the
time development for the radial electric field is given by

∇ψ 2
+ 4πnmc 2

∇ψ 2

B2

∂2Φ
∂t ∂ψ = 4πeΓ i (6)

In this equation, Γi = Γii is the ion particle flux. (Γee is very
small and neglected.) Φ is the electric potential, ψ is the
toroidal flux (the radial electric field is Eψ = – ∂Φ / ∂ψ), and
the second term on the left hand side is attributed to the
classical polarization current. The bracket 〈…〉 means the flux
average. The ion particle flux Γi is defined by

Γ i = dv vd ⋅ ∇ψ f (7)

Equation (6) with (7) holds independently of the magnitude
of pressure gradients. That is, eqs.(6) and (7) are unrelated to
the ordering of ε = ρp / L. In the standard neoclassical theory,
like-particle collisions produce no particle flux in the SOW
limit, and hence Γi vanishes. However, in the δ f simulation,
Γi remains finite even if the pressure gradient is very small,
because the effect of FOW is rigorously taken into account
by solving guiding center equations. If the FOW effect is
small, Γi is small and a small Eψ is generated. If the FOW
effect is large, Γi is large and a large Eψ is generated. The
radial electric field evolves so as to vanish Γi to maintain the
charge neutrality.

In this paper, only the case of ∇T = 0 is considered. For
simplicity, it is assumed that the magnetic surfaces are
concentric and circular. Then, equation (7) becomes

1 + c 2

v A
2

∂Er

∂t
= – 4πe d 3

v f vdr (8)

where vA = B/(√4πnm) is the Alfven speed. The radial and
poloidal drift velocities are given by

vdr = –
v ||

2 + v 2

2Ω0 R0

sin θ (9)

vd θ = –
Er

B
–

v ||
2 + v 2

2Ω0 R0

sin θ (10)

where R0 is the major radius and Ω0 = eB0/mc with B0 the
magnetic field at the axis. The parallel flow velocity has a
form of
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v || (r , θ) = v ||
B0

B
(11)

with

B = B0 1 – r
R

cos θ . (12)

Taking the time derivative of Eq.(8) yields

ε ⊥
∂2 Er

∂t 2
= – 4πe d 3

v
∂f
∂t

vdr (13)

with

ε ⊥ ≡ 1 + c 2

v A
2

∼ c 2

v A
2

. (14)

From the drift kinetic equation (5)

∂f
∂t

= – e
m

∂Φ
∂t

∂f
∂ε – v || + vd ⋅ ∇f + C . (15)

The standard neoclassical theory gives an exact solution
to the drift kinetic equation for the case of ∇T = 0 [1]. The
solution is a shifted-Maxwellian distribution function fSM

expressed as,

fSM = 1 + 2
v || vz

v th
2

fM (16)

where fM is a Maxwellian with a thermal speed vth given by

fM = n

πv th
2

3/2
exp eΦ

T
–

2ε
m v th

2
(17)

Here, T is the ion temperature. It is noted that the shifted
Maxwellian annihilates off the collision term ; C( fSM, fSM) =
0.

Insering Eq.(16) together with Eq.(17) into Eq.(13)
yields, up to the order of O(εt = r/R0) and O(〈v||〉/vth),

∂2 Er

∂2t
+ ω GAM

2 Er = H (18)

where ωGAM is the GAM (Geodesic Acoustic Mode) frequency
[12] given by

ω GAM
2 = 7

4
v th

2

R0
2

(19)

and

H = ω GAM
2 T

e
1
n

dn
dr

+ rmΩ
eq R0

v || (20)

where q is the safety factor, m the ion mass, e the ionic
charge, and Ω is the ion cycrotron frquency. The wave
equation is the same as that in ref. [11] in the small 〈v||〉 limit.

Equation (18) suggests that the radial electric field
interacts with moving particles to generate an oscillation with
a frequency ωGAM. The solution to eq.(18) is

Er = E r + Ae – i ωGAM t (21)

The amplitude A is Landau damped and Er is changed slowly
by magnetic pumping [13]. It is known that the damping rate
depends strongly on the value of the safety factor q. In the
long time limit after the GAM oscillation damps out or after
time averaging, the relation between the radial electric field
and the flux averaged parallel flow becomes

v || = –
q R0v th

2

2rΩ
1
n

dn
dr

– e
T

Er . (22)

This is just the relation given by the standard neoclaassical
theory [1]. Note that the equation (18) or (21) has been
derived without SOW assumption.

4. Summary

The analysis has been restricted to the plasma with no
temperature gradients (∇T = 0). The purpose of this restriction
is to compare the relation of the radial electric field and the
parallel flow between the standard neoclassical theory in the
SOW limit and the present analysis assuming no SOW limit.
Both relations agree completely. This suggests that the FOW
effect may not affect the standard relation between the radial
electric field and the parallel flow velocity.
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