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Abstract

The excitation of zonal flows by ion temperature gradient driven modes is studied by analytical and numerical

methods using a reactive advanced fluid model. It is shown analytically that the dominant nonlinearity is the convection

in the energy equation. The excitation of zonal flows is particularly strong just above linear marginal stability leading

to a nonlinear upshift in the critical gradient for steady transport. Turbulence simulations confirm the overall

expectations and a nonlinear upshift in agreement with the Dimits nonlinear particle simulations is obtained. The

strong excitation of zonal flows just above marginal linear stability is due to the fluid resonance in the energy equation.

This is exactly where the fluid closure is made so the excitation of zonal flows depends sensitively on this closure.
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1. Introduction

One of the most important aspects of turbulent systems
is the presence of background flows [1-7]. Such flows may
be due to pressure difference as in pipe flow, rotating planets
or, in plasmas, neoclassical effects [8], pressure gradients or
external excitation by beams. However, there can also be flow
generated by the turbulence itself [1-7]. Such flows are
generally parallel (streamers) or perpendicular (zonal flows)
to the background pressure gradient. We will here focus on
zonal flows which tend to reduce transport and thus have a
regulating effect on it. The importance of flows for tokamak
transport has been recognized relatively late. The beginning
actually was in connection with the L to H mode transition
where most models involve the effects of radial electric fields
which generate rotation at the edge giving an edge transport
barrier. Later flows were also used to explain internal
transport barriers. Recently nonlinear gyrokinetic simulations
have shown strong effects of zonal flows. In particular Dimits
[4] discovered a nonlinear upshift in the critical ion
temperature gradient for the onset of steady ion thermal
transport and some simulations indicate that flows have a
general tendency to regulate transport. For very short
wavelengths ETG (electron temperature gradient) modes,
streamers were found to be very important in nonlinear
gyrokinetic simulations [9]. As will be argued in this paper,
kinetic resonances are playing an important role for the
nonlinear upshift in kinetic simulations. So how is it possible
for fluid drift wave models without zonal flows to describe
tokamak transport? First we need to distinguish two separate

effects of zonal flows. One is the already mentioned nonlinear
upshift.

Another is the damping of modes with long radial wave
lengths. Since the E X B nonlinearity tends to isotropize
turbulence, a damping of eddies with long radial size means
that the zonal flow acts as a general sink for long wave-
lengths. This sink can be caused by sheared poloidal flows in
general i.e. generated either externally or by the turbulence.
Thus, in codes without external sources for the flow, the
nonlinearly generated zonal flow will be essential for damping
out long wavelengths thus generating an absorbing boundary
in this limit. Since a reflecting boundary for long wavelengths
increases the turbulence level strongly, this can introduce a
very strong sensitivity of the transport level to the flow. Since,
however, long wavelengths are more easily torn apart by the
flow, having an absorbing boundary for long wavelengths is
much easier for a large radial box size. Since the effective
radial box size in the experiments is quite large, an absorbing
boundary for long wavelenths will usually be a realistic
assumption. The other aspect, i.e. the nonlinear upshift, is
only important sufficiently close to the critical gradient. In
the Cyclone case [4] the nonlinear upshift was 50 % but the
experiment from which the data were taken (D-II-D 81499)
had a gradient which was 73 % above the linear critical
gradient at half radius. Thus the experiment was well above
the nonlinear upshift and there our fluid model, without
nonlinear upshift, was in reasonably good agreement with
Dimits gyrokinetic simulation. This situation can be expected
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to occur generally for collisionless plasmas with strong
heating. Thus a fluid model which assumes absorbing
boundary for long wavelengths should be applicable for most
present day tokamak experiments in steady state.

We will in the present paper analyze the effects of zonal
flows in kinetic and fluid simulations. In particular the effects
of the fluid and kinetic resonances turn out to be important.
This will naturally connect to the questions of the fluid
closure which will be discussed in detail.

2. Fluid model

The main part of this work will be based on the reactive
fluid model first applied to ITG (ion temperature gradient)
transport in [10]. It uses the collisionless parts of the
Braghinskii fluid model where the argument for the closure
is nonlinear effects in velocity space rather than collisions.
This closure has been discussed in several papers and in the
book [11]. Also a collisionless derivation has been made for
anisotropic temperatures [12]. For isotropic temperatures we
have the collisionless energy equation:

v;=-V-q,

3,0 -
ST VI +BY (1a)

where

P =§
q q*t_z

(e" X VT). (1b)

We note that thermal force effects are collisional although
they appear as reactive in the Braghinskii formulas. Thus they
have been excluded. It is the heat flow given by eq. (1b) that
defines the closure. It means that we can express the heat
flow in the lower moments n and 7 which means that we
have a closed system. Another type of closure is developed
in [13] (see also [14, Sec. 11]) on the basis of the stochastic
treatment in [15]. Using the relation:

V-G =—§m7* -VT+§m“;D VT, 2)

where V. and V), are the diamagnetic and magnetic drifts, we
obtain the temperature perturbation:
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where w. and wp are diamagnetic and magnetic drift frequen-
cies. Equation (3) is comparatively simple but implicit due to
the presence of the density perturbation. For Boltzmann
electrons, however, eq. (3) directly gives a simple relation
between temperature and potential perturbations. We will here
only consider this case.

Equation (3) contains the fluid resonance at @ = (5/3)wp,.
Since we keep it we can describe both the adiabatic regime
> wp; and the isothermal regime w < @p;. However we
postulate that due to nonlinear effects in velocity space we
can use eq. (3) also when @ = (5/3)wp,. This is actually the
“advanced” feature of the present fluid model.
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3. The fluid closure

For comparison with nonlinear kinetic theory in general
and, in particular, for the nonlinear upshift, it is important to
analyze the relations between the fluid and kinetic resonances.
When used in combination with the ion continuity equation
and the usual low frequency fluid drifts, the temperature
perturbation eq. (3) leads to a three pole density response in
the presence of parallel ion motion. If we include higher order
moments, we get a higher order density response in terms of
poles (fluid resonances). In general we have a density
response of the type:

ﬁ:(g.“n O—0s+... ep
n (-0 —00p)...(0—a,0p)0—kv,) T,
(4a)

for a fluid response of order n + 1. Such a response can also
be written in the form:

Z o= ;0. e‘?’ (4b)
o-o,0p T,
by means of splitting into partial fractions. Now eq. (4b) is
of the form of the response due to a sum of cold beams. It
was shown by Dawson [16] that the usual Landau damping
is recovered when such a sum is extended to infinity when
the cold beams correspond to a discretization of a Maxwellian
velocity distribution. Thus we conclude that the kinetic
resonance will emerge if we go to infinite order n in eq. (4a).
The kinetic resonance will give an imaginary part corre-
sponding to linear drift resonances and Landau-damping. The
imaginary part is, thus, expected to be the main addition
obtained by going to infinite order. Gyro-Landau models
[17,18] thus include a complex heat flow. The simplest gener-
alization of eq. (1b) was obtained in [18]. There the closure
was made by adding a complex heat flux to eq. (1b) and
matching this to linear kinetic theory. Basically a gyrofluid
model is obtained by the replacement
g =g« +iqy (5
where g, is the Gyro-Landau resonance representing the
influence of infinitely many higher order moments. There are
also higher order gyro-Landau models that add the gyro-
Landau resonance in the equation for a higher moment. It is
obvious that this gyro-Landau resonance will differ from that
added directly to the energy equation. This means that The
fluid resonances contribute a part of the full linear kinetic
resonance. Of course, once the system has been closed we
can, by eliminating higher order moments algebraically,
calculate a new g, to be used in eq. (5). Thus the formulation
in eq. (5) is quite general.

We will now briefly recall the collisionless fluid deriva-
tion [12] of eq. (1). The derivation actually leads to anisotropic
temperatures with one energy equation for the parallel tem-
perature perturbation and one for the perpendicular. The
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nonlinear parts of these equations will contain curvature terms
that tend to isotropize the temperature perturbations. Because
of this we will assume isotropic temperature perturbation.
However, the main ingredient in this derivation is to ignore
the irreducible part of the four velocity correlation. We will
here formally include it in the form:

SVVVYp > =<y, ><vyy >

<V ><Vy >+l + G
where

G =<vyvv; >, - (6)
This means that G is the part of the four velocity correlation
that can not be reduced to products of two velocity correla-
tions. G is, in fact, the first higher order fluid moment that
has been omitted from our model. Just as for any other fluid
moment there must be a transport equation for it. We write it
in the form:

oG

0 0
9 = 2 e )G+, .
ot ar(ZG 8r) 6 0

where ) is the effective transport coefficient for G and Sg is
the source.

Our argument for closure is that there will be no source
(Sg =0) in eq. (7) if the heat source is not resonant with the
turbulent fluctuations we consider. The velocity space picture
is that nonlinear effects will continuously take particles out
of resonance. For comparison we note that for modes driven
externally by velocity space resonances, the source will be
resonant with the fluctuation (e.g. for Fishbone or TAE
modes). In this case there will be a source in velocity space
which will continuously fill in resonant particles.

We can write the drift kinetic equation in the form:

o . - . 9
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Here S, is the source in velocity space and g, is the charge.
Such a source will always be present in connection with
heating and/or current drive. For perturbations, we are usually
considering eq. (8) in (w, k) space. The velocity distribution
would then relax towards a state where the source exactly
balances the nonlinear velocity space terms for a resonant
external source. If, however, S, does not have Fourier
components in the (w, k) regime of the considered turbulence,
it will not contribute. Thus we can introduce the term
“correlated source” for the case when fluctuations are driven
by the source in velocity space and “uncorrelated source” for
the case when S, does not have Fourier components in the
regime of our turbulence. For the background distribution
function we furthermore assume that there will not be a

76

source filling in a Maxwellian distribution at the typical phase
velocity of our turbulence. We note that e.g. ion cyclotron
heating will have a frequency at least two orders of magnitude
above the typical frequency of drift wave turbulence and will
not be resonant even with the drift waves with the shortest
frequencies. These will furthermore be strongly damped by
viscosity. Now deriving fluid equations from eq. (8) we will
obtain a transport equation of the type eq. (7) where the ex-
ternal sources will not contribute to S;. We have one more
case where S; will not contribute. This is if S; averages out
on the transport time scale. This will be the case in a rather
coherent situation with particle trapping. The energy exchange
between wave and particle will then clearly average to zero
in a bounce period. As we know, the nonlinear effects will all
the time work in the direction of taking particles out of
resonance and as we can see here, there are several possible
ways in which this can happen. This leads us to the following
closure strategy: We include all moments that have sources
in the experiment [11]. This means that we include also g-
since it depends only on n and 7. Now the fluid resonances
associated with the moments that have sources in the ex-
periment will be maintained due to these sources. Since these
resonances are a part of the full kinetic resonance, this means
that the velocity distribution does not have to become com-
pletely flat even in the quasilinear limit when G relaxes to
zero. Another relevant aspect is that lower order moments
sometimes can give sources for higher order moments. An
example is Ohmic heating where a current gives a heat
source. We note, however, that this is a completely random
process. Such a process would not give a source for G. A
further support for this point is also that the closure G = 0
was obtained for a semiconductor plasma by using the
entropy principle for an isolated system [19]. Furthermore
collisions gave a source only for the reducible part of G. This
again focuses interest on the external sources. The general
closure problem for driven systems is, of course, quite com-
plicated. It is, however, possible to study idealized models of
such systems. The most simple case is actually to replace the
sources by fixed gradients. In steady state the sources of
density and temperature will exactly balance the transport in
such a way that the gradients became stationary. The real
sources, may in general, also have other effects. Thus fixing
the gradients is equivalent to applying ideal sources which
have no other influence than to maintain the gradients. An
example of such a study was the Cyclone project [4].

4. Zonal flows

As it turns out, the description of the nonlinear (Dimits)
upshift, which is an effect of zonal flows, puts exceptional
requirements on the fluid closure. The reason for this is that
the Dimits upshift is caused by the convective nonlinearity in
the energy equation which is sensitive to the fluid resonance.
Actually the resonance in the energy equation is exactly at
marginal linear stability in the strong ballooning limit. It is
given by [20]:
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0=, (9a)
3
T = §+§8n . &, =2L,/R. (9b)

Since there is a pole in the temperature perturbation at mar-
ginal stability, it will be large just above marginal stability.
Then also the convective nonlinearity Vg - VT will be large
and there will be a strong nonlinear excitation of zonal flow.
We have calculated the nonlinear coupling factor for the
zonal flow, using two different orderings in the Taniuti
reductive perturbation method [21]. We consider only self-
interaction of a mode at the correlation length. Nonlinear
simulations have shown that this is also the linearly fastest
growing mode [22]. With a standing wave structure in the
radial (x) direction with mode number k,, and propagating
wave in the poloidal (y) direction we can write the
dimensionless (normalized by 7/e) potential diéz) of the flow
as [6,7]:
O =k, Lk, p,’T | 9" |2 sin2k, x . (10)
Here ¢\" is the dimensionless drift wave potential, here as-
sumed to be of order &, L is the system size in x and T is the
nonlinear coupling factor. It contains the denominator of eq.
(3) in the denominator but also a factor (1 + kZp?) — @,
where @; = @, — 1), ®, is the real part of the local eigenfre-
quency and y; = (1 +%)%wa is the magnetic shear damping
(s is the usual shear parameter, g, the safety factor and 7 =
T,/T;). Thus we have a resonance which can be detuned both
by linear instability and by magnetic shear damping. Both
these features show up in nonlinear turbulence simulations
[7].
The resonant ordering gives a Zakharov like system
where, however, the low frequency equation has only first
derivatives. It is [23]: (compare also the resonant ordering in

(21])

a0 o o[
a T TaE T e

We note that eq. (11) becomes of the same form as eq. (10)

Y

in the quasistationary case when the time derivative can be
ignored. We can then integrate eq. (11) with respect to &. A
resonance of the same type as in eq. (10) is thus also present
in eq. (11). The behaviour of the couplingfactor ¢, at marginal
linear stability was studied in [23] where also a gyrofluid
resonance was included in one case for comparison. As
expected, the gyrofluid term had a significant detuning effect
on the resonance giving a much smaller |c,| than with our
reactive model. This seems to be the reason why the IFS-
PPPL model got only half the kinetic nonlinear upshift in the
Cyclone simulations [4] while recent simulations [7] with our
model gave the same nonlinear upshift as Dimits nonlinear
kinetic simulations [4]. This is shown in Fig. 1 where the
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Fig. 1 The nonlinear upshift shown as the difference between

threshold for transport in a quasilinear model and a
nonlinear simulation including zonal flow. Parameters
from ref. [7] corresponding to data from ref. [4].

dotted line is the quasilinear result [4] and the full line is the
nonlinear simulation from [7]. Our simulations also confirmed
the detuning of zonal flows by magnetic shear predicted by
our analytic calculations [6]. This trend, i.e. an increase of
transport with magnetic shear, is also in agreement with
simulations of ETG turbulence [9] as it seems for similar
reasons.

It is very interesting to compare the above results for
excitation of zonal flows in a fluid model with the corre-
sponding kinetic results. The main paper to compare with is
here the Cyclone paper [4] where particle collisions were not
included. As pointed out above, there is complete agreement
with the nonlinear upshift between our fluid simulation [7]
(Fig. 1) and Dimits simulation. The upshift in the kinetic
simulation was, however, sensitive to the convergence with
regard to number of particles. Thus only half the upshift was
obtained with 4 million particles while all simulations with 8
million particles or more got the published upshift. The
maximum number of particles was 134 million particles. It
has recently been pointed out [24,25] that it is the resonant
regimes in phase space that are most sensitive to the con-
vergence with regard to number of particles and that a particle
loading with more particles in the regimes of wave-particle
resonances reduces the total number of particles needed. Since
convergence with regard to number of particles was obtained
in [4] above R/Lt = 7 (experimental gradient) also with 4
million particles we conclude that wave particle resonances
are important in the nonlinear upshift regime and more
specifically: the wave particle resonance is important for
obtaining the correct nonlinear upshift. Reducing the number
of particles in the resonant regime decreases the nonlinear
upshift. Thus we may conclude that the nonlinear upshift is
due to the kinetic resonance in kinetic simulations. As we
have already seen, the nonlinear upshift is due to the fluid
resonance in an advanced fluid simulation. We then conclude
that obtaining the correct nonlinear upshift in a fluid
simulation is a sensitive test on the closure.
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5. Collisions

As pointed out above, the Cyclone simulations had ideal
sources and no collisions. This means ideal conditions to
apply our fluid closure (the present closure would work also
in a collision dominated case but this is not realistic for
application to tokamak cores). A remaining question is that
turbulence which cascades to smaller and smaller scales can
cause an apparent effective dissipation. We can describe this
as an additional diffusion acting in a similar way as viscosity.
Such an effect was recently added to the Mattor Parker
system. Mattor and Parker [26] introduced a nonlinear closure
into a system of three interacting slab ITG modes. The non-
linear closure essentially meant including a nonlinear fre-
quency shift into the plasma dispersion function. The solution
was very similar to the usual three wave interaction but the
closure gave a slight reduction in the nonlinear oscillations.
The addition of diffusion to this system gave a slow decrease
in time of the oscillations indicating relaxation to a nonlinear
equilibrium [27]. Qualitatively the time development became
similar to that in the Cyclone simulations. The final transport
level can be considerably lower than for the gyrofluid,
Hammet-Perkins closure [18] just as the Cyclone simulations
gave an asymptotic transport level that was considerably
lower than that obtained in the gyrofluid simulations.

In real systems we will also have effects of electron-ion
collisions. Here an important aspect is the result in [19] that
collisions only give a source for the reducible part of G. It is
also very instructive to read ref. [28] where the beam-plasma
instability was simulated using a particle code. There the only
observable effect of collisions was to damp the wave. Since
drift waves are maintained by gradients in real space this
would be of no consequence as long as the turbulence level
is not strongly modified. We recall that ITG modes are fairly
insensitive to collisions. The weak nature of the turbulence
in [28] is not an important limitation here. In fact nonlinear
detuning of wave particle resonances are likely to be stronger
in strong turbulence [29,30]. A direct comparison between
collision frequency and trapping frequency or inverse time of
quasilinear flattening also shows that effects of collisions
would be subdominant for typical drift wave saturation am-
plitudes in core tokamak plasmas [31]. Another aspect of
collisions is that they can damp zonal flows in the nonlinear
upshift regime [5].

6. Discussion

We have here discussed recent developments in fluid
modelling and compared to nonlinear kinetic results. In
particular the fact that fluid resonances form part of the
kinetic resonance is very important in understanding how a
reactive fluid model can be in agreement with a nonlinear
kinetic code in a regime where both kinetic and fluid reso-
nances are very important. We have distinguished a simple
limit where the reasons for discrepancy between fluid and
kinetic models can be narrowed down. This is the case of
ideal sources without collisions that was studied in the
Cyclone work. This is the most fundamental limit in which
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the closure can be studied and should be understood first. The
nonlinear upshift due to zonal flows was found to be due to
the kinetic resonance in nonlinear kinetic simulations and due
to the fluid resonance in a fluid simulation. The comparison
of these simulations is thus a sensitive test of the fluid closure.

Concerning general influence of zonal flows in experi-
ments, it seems that a situation with absorbing boundaries in
k-space and gradients above the nonlinear upshift region is
most likely. In transient experiments [32] with time varying
heating, however, the nonlinear upshift may become more
important, in particular for stiffness, since the profiles may
transiently enter the nonlinear upshift regime.
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