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Abstract
Linear properties of electromagnetic ion temperature gradient (ITG) modes in toroidal helical

systemr are studied. The collisionless ion gyrokinetic equation and the massless-electron assumption are

used tc derive two coupled integral eigenmode equations for the electrostatic potential and the parallel

compolent of the vector potential from the quasineutrality condition and the Amdre's law. Based on a

model magnetic configuration for the Large Helical Device (LHD), the real frequencies, growth rates,

and ei1;enfunctions of the ITG mode are obtained by numerically solving the integral eigenmode

equations. Effects of p = (plasma pressure/magnetic pressure) on the ITG modeare investigated and

compaled with those in the tokamak case.
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1. Introduclion
The ion temperature gradient (ITG) mode is

considered to (jause the anomalous ion thermal transport

in high temperature core regions of tokamak plasmas

[1]. Recently, helical systems such as the Large Helical
Device (LHD) t2l have succeeded in producing high ion

temperature plasmas, and there have been several

theoretical strrdies on the electrostatic ITG mode in
helical systerns [3-6]. In addition, experiments to
produce high,:r B plasmas in helical systems are in
progress, an<l therefore it is important to clarify
electromagnetic effects on the ITG mode. The finite-B
effects on the ITG mode in tokamak plasmas has been

investigated try Dong et al. U). In this work, linear
properties of the electromagnetic ITG mode in finite-B
helical systems are studied and compared with those in
the electrostatic case and in the tokamak case.

The spatial distribution of the magnetic field
strength in a lzLrge-aspect-ratio toroidal helical system is

written as

BlBo= 1- €t cos 0- €6 cos (L0- M(), (1)

C o r r e s p ondin y, autho r' s e - mai I : tku r o da @ nifs. ac.j p, s u g ama @ nifs. ac.j p

where Be is the magnetic field strength on the magnetic

axis, 0 and ( represent the poloidal and the toroidal
angles, respectively, and Z and M are the poloidal and

toroidal period numbers of the helical fields, respec-

tively. For example, L = 2 and, M = lO for the LHD. €t

- r and tn n rL with the minor radius r represent the
parameters associated with the toroidicity and helicity,
respectively. In helical systems, characteristics of the

ITG mode are influenced by the existence of the helical
magnetic component and the negative magnetic shear in
contrast to the toroidal symmetry and the positive mag-

netic shear in conventional tokamaks.

2. Eigenmode Equations
In this section, two coupled integral eigenmode

equations for the linear electromagnetic ITG mode in
helical systems, which are similar to those of Dong el

al., are presented. The temporal dependence of the
perturbation terms fr (the electrostatic potential) 4,, lthe
parallel component of the vector potential) is assumed to
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be given by 6, A, * eXp (-iart) with a complex
frequency o) = @, + i7 and time /. The distribution
functions for species a = i(ion), e(electron) are written
as fo - nFyo + df (hereafter, the subscript a is omitted
for simplicity except where it is necessary). Here, the

equilibrium part is assumed to be the Maxwellian
distribution function Fy1 = v-3t2r-t exp(-azlal), wherc

the thermal velocity is given by o1 = (2Tlm)tt2 with the

equilibrium temperature Z and the mass m for each

species. The perturbation part is given by 6f = -1q"q1
T)nFy + frexp(-ikL. P), where p = (B/B x (u/C!") is the

gyroradius vector, dlu= q.Bl(mc) is the gyrofrequency,

/c is the wavenumber vector, q" is the charge (q" = e for
ions, -e for electrons), n is the equilibrium density, and

c is the light speed. The nonadiabatic part of the

distribution function fr, is determined by the collisionless

linear electromagnetic gyrokinetic equation,

' l-lt3 3 +@-o.,\1n
lneae' ",]

/r,,,,r\ - e"n(; ?il;\ (Z)=\a - a.1)"ro t # | F" T l0 -; A,l ,
\ r48,/ I \

where alp = kt.uo, vD= d2'1(a? + altZlO2n xYB, o)*^, =
a;- [ + n@/ai-3/211, a* = ckeTlq.BL,, Tl = Ln/4, Ln=

- (d/dr)ln n, and la = *(d/dr)ln ?. In the case of the tor-

oidal helical configuration given by eq. (1), the mag-

netic drift frequency is given by

f\l^^\
oo = 2lL 

" 
/ r )at. tluf + ui | 2) / u'r'

f
I

x 
I e,{cos e + l3 @ - 0)- aosin dl sin 0}
L

+Len{cos(Ie-M()
l

+[3(0 - 0)-d,sin?]sin(Ld -M0ll, (3)
I

where .i = (rlq)dqldr is the magnetic shear parameter.

Here, /cs = ko(Yo + 01,Yq) is the perpendicular
wavenumber vector given by the ballooning representa-

tion [8], where 4(r) is the safety factor, a = ( - q0 is the

label of the magnetic field line, and ko= -nt represents

the toroidal mode number, which is related to the
poloidal wavenumber as k6= 2rq1v.

In order to derive the eigenmode equations, the
quasineutrality condition

are used. The number density perturbation n = [Ea 6f
and the current density perturbationjt= e.Jda an 6fare
rewritten in terms of fr and All by integrating eq. (2).

Here, we neglect effects of trapped particles and take the

lowest-order solution of eq. (2) in the massless-electron

approximation. The resultant integral equations for the

electromagnetic ITG mode are given by

(r + c.)O(r,) =

and

L.4(r)=
ar rr\ /

| ,'t I

| #ltx;, (k, k') K;, (k. k')l\&')
J__{2EL' --'

,."0" ;fur@ - r,')x(r, r. | , (ro)

,r"at ffift - r')'x(*.0', r) 
1r l)

ri,(t ,t')=tffi(&- t)'sn (o -o'), 02)

K;,(k,k')=-ftx;,Q,,r,'), (13)

r](t<, t<') =

o,l- 

^Tr( 
:u)' a"1g." - r) 

| 
o - o' 

I

,tnq'krla 1,,. 'I l
- ffiiq\ -a.. - \' - ry.))'gn(t -ft')s(e,0')1, 04)

and

+ lK,)r(k,ft') + K:r(k,k')l Au (ft',)]. (6)

+ {K)r(k ,k' ) + KL& , k',)l An tr',ll , tzl

where
.0

.lri'(t.t')=-i I a."nr(re,n',r), (8)
J--

and

rc)(*,*)=-,,[:

rc)(*,r,)=-,1'_

fli=fle,

and the Ampbre's law

(4)

=-+(i".; ),Y,,4, (s)
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x(t.t'.r)= 9''T 
"-G-*'\2t+t'\ t ,lall+a)^tX,

I
,l&r, + r - 3rn, *''(u 4 - ffil

t

(, -++. -!L,.,-1, llrt*,. ri) rrsr

\ ,tr+ a)r" (t +a)r" ,')l

Here, g(O,d) = J3 Og' G" (g') with G" = ob/]2(L,/r) s@-i
(a?t + a|lz)lazril using eq. (3), 7 = 1*af.tr.a)(3e,lq)2, a =
| + i(2e,lr")a."rg(0,d)l(0 - e), Ft= 8mtTl!82, F = F{l
+ r"), k = ke3(0 - e),li = kei(g - 01),1&1= tAtt + G(e -
0t) - %sin 0)21, k'12 = IAU + (3(d - 0*) - % sin €)21, q
= -noq2(d,/dr) = (q2Bile")(l + c")(l + 4), and eo = LJRo
(Rs: the major radius). In eqs. (6) and (7), Q, Ax, and k
are normalized by T"le, (7"/e)(c/a7), and, p;t - eBl

1c'{fi7"5, respectively. For evaluating ft1, we have used

the s-a equilibrium model [9]. An explicit form of a is
given by

= | - iz(L^ / r)t;ta.J | (e - e')

>< (r,[f; + l)(sin g- sin A')- 3{(O- g*)cos e -(e' -0*;cos d')

- ? {t -g';- lsin o cos o- sin o'cos o')) 
]

+ (tcJI*H" x 
{sin ({t -ude-Mo)-,in({r -uq|e'-ua)l

,:@ {te - ao) 
"o' 

(<r - uqye - M ") - 
(0' -eo; cos ((r - ua> e' - m a)\

.? ( , .1, ,{rrn (rr - Mq +2 \L-Mq+1t \

- I {'in(lr -Mq -L-Mq-lt

r)e'

lfe'

a)- 
'in 

(

a)- sin (

_M\e

\e _M

lL -Mq +

lL -Mq -

-Ma

-Ma

))

)))l)

It should 're noted that K21 and K22 are proportional

to B1, which represents that the electromagnetic
component gi.ren by An appears only for finite B1. Our
previous work on the electrostatic ITG mode [3] is

reproduced in the limit F, -+ 0.By solving the integral
eigenmode eqs. (6) and (7), the parameter dependence

of the dispersion relation is obtained as

&= F @, j, oo, a, ke, Ij i, 4 
", 

€,, a p, r e, eJe t, L, M),

(r7)
where F is a dLmensionless function.

3. Numerical Results
Here, we use the standard parameters of our

previous work [3], which are given by q = 2, 3 = -I
(negative shear), d1 = O, d= O, k^, - 0.65 41 = tl.= 3,

t, = O.3, tr" =, l, €61e, = l, L = 2, M = 10. For the

tokamak case, e6lq - 0.

(16)

Figure I shows the B1 dependence of the real
frequency and the growth rate of the ITG mode. For ft =
0.001 Vo and 0.5 Vo, the real and imaginary parts of the

eigenfunctions { and A1; are plotted in Fig. 2 for the
negative shear tokamak case and in Fig. 3 for the helical

system. For both tokamak and helical cases, the low B1

case (B1 = 0.001 Vo),the real frequency, the growth rate,

and the potential eigenfunction are in good agreement

with those in the electrostatic case [3], and the

amplitude of 4,, is negligibly small. As shown in Figs.

2(c),(d) and 3(c),(d), the magnetic fluctuation A1 grows

due to finite p1, which also adds some deformations to
the elecftostatic potential. This represents the coupling
to electromagnetic shear Alfv6n waves [7], and gives

stabilization effects to the ITG mode for both tokamak
and helical cases with pi increased as seen in Fig. l(a).

Comparing the profiles of the eigenfunctions in
Figs. 2 and 3, the eigenfunctions for the helical case are
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more oscillatory due to the helical magnetic ripples than

those for the tokamak case. In the helical system, these

oscillations in the eigenfunctions, which are more

enhanced for higher B', increase the effective parallel

wavenumber, decrease the parallel phase velocity, and

Fi
Fig. 1 Normalized real frequency ata-.and growth rate

yla-.as a function ol ptfor e =2, 3=-1, 0*=0, a=
O, keili = 0.65. 4' = rl" = 3, €" = 0.3, and ?" = 1. Here
4/er= Q for the tokamak case, and enler= 1, L = 2,
M = 10 for the helical system.

Fig. 2 Normalized eigenfunctions e6l4 and ev,AtlcT.in
the tokamak case with €6lEr= g, for q = 2, 3 = -1 , 0*

=0, a=0, ke6i= 0.65,4r = \"=3, €, = 0.3 and r" = 1

for two cases of 6 = 0.001 % t(a),(b)l and A = 0.5
% t(c),(d)]. The horizontal axis represents the cov-
ering space of the ballooning angle 0.

accordingly strengthen the ion Landau damping. Also,

the helical magnetic ripples reduce the bad curvature

region in the outside of the torus [3]. Thus, the growth

rates of the ITG mode are smaller for the helical system

as shown in Fig. 1(a), where the complete stabilization
occurs at Ft = O.8 Vo.

4. Summary
In this work, we have investigated electromagnetic

effects on the linear ITG mode in helical systems with
finite p. Higher B increases magnetic fluctuations and

gives more oscillatory profiles of eigenfunctions, which
results from the multiplier effect of the helical magnetic

ripples and the coupling to electromagnetic shear Alfv6n
waves. Thus, the growth rate of the ITG mode for the

helical system decreases with increasing B1 and keeps

smaller values than for the tokamak case.

Here, effects of collisions, trapped particles,
impurities, and sheared electric fields are not taken into
account. Also, another branch of unstable modes, which
is associated with the kinetic Alfv6n mode, was

discovered by Dong et al. l7l although it is not found
here yet. These subjects remain as future tasks.
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3 Normalized eigenfunction s e$lT" and evnAnlcT"in
the hef icaf system with 4/€t = 1, L = 2, M = 10 for
q = 2, 3= -1, ek= O, a= O, kari = 0.65, tli= Il"=3, €n

= 0.3, and % = 1 for two cases of B, = q.gg1 o/o

l{a),(b)l and 0 = 0.5 % I(c),(d)1. The horizontal axis
represents the covering space of the ballooning
angle 0.
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