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Abstract
Neoclassical transport theory is extended to include the effect of finite deviation of the particle orbit

from magnetic surfaces. In the low collisionality limit, the transport flux is expressed in the form of the

integral with respect to the magnetic surfaces.
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1. Introduction
The theory on transport process of the plasma in

the toroidal configuration is based on the assumption

that the fundamental plasma properties are described by

several averaged quantities such as number density,

temperature, and so on, which are considered to be

functions of magnetic surfaces. This assumption implies

that the plasma particles stay on the magnetic surface

without collision, or more generally, the deviation of the

orbit from the magnetic surface is much smaller than the

characteristic length of the variation. In some

experimental situations, however, the orbit of some

particles deviates significantly from magnetic surfaces ;

the inclusion of such effect into the transport theory

remains as an important issue of the theory.

In the collisionless limit, the distribution function is

constant along the particle orbit in the phase space.

Therefore the distribution function may be considered

function of constant of motion, i.e. energy, magnetic

moment, and the longitudinal adiabatic invariant.
However, the statement that in the limit of low
collisionality the distribution function is described only

by the constant of motion is not correct in the toroidal
plasma.

In the toroidal configuration there are several kinds

of particles with orbit having the different topology.

Since the collisional effects are described by the second

order differential operator in the velocity space,

continuity of the distribution function and its derivative

with respect to the energy and magnetic moment is the

requisite. The both requirements cannot be satisfied at

the boundary of the different orbit topology. This means

that, even if the collision frequency is small, the

distribution function is not constant along the particle

orbit in the certain part of the phase space, where the

collisionality is effectively enhanced.

The purpose of this paper is to open the way to treat

the effects of the finite deviation of the drift orbit from the

magnetic surface. For that purpose, we shall first consider

the simplest situation. The ripple trapped particle moves

apart from the magnetic surface, while for the passing

particles the orbit effects are ignored. The helical ripple is

assumed small, and the number of trapped particles is

small; therefore the lowest order distribution function is

essentially determined by the majority passing particles.

We also assume the up-down symmetry of the averaged

quantities for the sake of the closing of the particle orbit.
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2. Bounce Averaged Kinetic Equation
We employ the Boozer's coordinates @,e,0, V

being the toroidal flux [1]. The magnetic field is
expressed as

B=YV >< V0+ V0 x Vyp(y)

= BrY\t + Bs(rtt)V0 + Bq(t1r)YQ. (1)

We consider the helical torus with toroidal period N and
the rotational transform per period is assumed to be

small:

LlN <. r. (2)

The motic,n of charged particles in such systems are

described by tLsing the longitudinal adiabatic invarianr

t2l

J;E,tr,V,o)=!6 r,ol, (3)
27tJ Y '

where

R,pr= mvrf + eYr(Vt. (4)

The representation of J depends on the nature of the pe-

riodic motion. The particles with the pitch angle

(s)

where .B-* is the maximum of the magnetic field
strength in thr: toroidal direction, are called as ripple
trapped particlos; they oscillate back and forth in toroi-
dal direction 'vithin the helical ripple. The adiabatic
invariant for them is

The particle heLving the pitch angle in the range 0 < I <
L, are the passing particles, and they move in one direc-
tion, + or -, around the torus. The adiabatic invariant for
them has the expression

z\t N
I .,p

J @.u.v/.e ' =L | "il "o dO t q Y-2ttl B 1/ Y

6r
:Ji r (h,ry,O)!![tfw>aw. e)- \ L rt 

NJ '\Y'luY"

Hence we can write the averaged kinetic equation as

is the bounce averaged collision operator.

3. Passing Particles
The passing particles are divided into two groups,

according to the orbit, the circulating particles and the
toroidally trapped particles. The circulating particles
keep the same direction of motion along the magnetic
field line, and stay in the same passing state while
drifting transverse to the magnetic lines of force; the
toroidally trapped particles may reach the point
(transition point) where the parallel velocity along the
magnetic field vanishes, drifting in poloidal direction.
At the transition point, the toroidally trapped particle
may change the direction of the motion along the
magnetic field, or may transit to the ripple trapped state.

As we consider the small Larmor radius case, the
first term in RHS of eq. (7) may be ignored in the
lowest order approximation. Hence we can write the
kinetic equation for the passing particles as.

en,r>=fcrt,nffao (e)

h== F
E

t,,D
t =?6'+dQ= G J,Q.,ty,l1. (6)2nI B

IaJaf IaJaf_-.--.
" OV, de - A Ae i'vr= " V''f t

t %= e(fo.fo)=0.N a0-'
The distribution function can be written as

f =fo@,AU + h(L,0;w,ty)1, lhl<1

e (fot ,fo)- v*r t lM # fr,

,= {? u,o,

where/e is the local Maxwellian with the number den-

sity n(rg) and temperatwe T(ry), and 1r stands for the

kinetic energy. If we only retain the pitch angle scatter-

ing term in the collision integral, the linearized collision
term can be written as

(10)

(l l)

(r2)

The linearized equation for passing particles is
quite similar to the axisymmetric tokamak; the main
body of the circulating particles and toroidally trapped
particles are considered as collisionless, and the
boundary layer between both types of particles are

treated as is described in ref. [3].
Attached to the boundary with the ripple-trapped

particles, a boundary layer develops. The analysis shows

that the width of the layer is proportional to the collision
frequency, and derives the consistent boundary
conditions for the ripple-trapped particles at the
boundary L= ),,(0):Here

(8)
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4. Ripple Trapped Particles
The characteristic time for the ripple-trapped

particles is longer than that of passing particles. When

the excursion time of the trapped particles arr I is much

longer than the effective collision time v"6 r, the effect

ofthe finite orbit deviation is not essential, and the flux
proportional to v"6r is found. The opposite limit is the

most interesting case, and it is the main object of this

paper.

The main body of the ripple-trapped particles is

considered as collisionless. and the distribution function

/r is expanded as

fr - F(o) + (v/arr)Ftr) a..' (r4)

and AF denotes the difference of distribution function at

two boundary points.

Now we shall try to solve eq. (19) in the expansion

F@ (HJ) = r'60) (H) + Fl0) (H,L) + ... (21)

with respect to some small parameter. This means that

we have the following equations

O2(H'1\
rf(.4)o==--! " lAdd,a"-u, J' ' o2@'1)

(20)

(22)

(2s)

(26)

90)Fo(o)=9,

g(o)F:o) _ _rUrr"#

-(brlo *%-! K(J,l)LF, (23)

t<ot= (a,)o #^#+ b,lo $. e4)
where F0) = Fo) (J,L). The first order function F1) satis-

fies

1ga4-1Q{,a4"= u!^u d4'o'. (rs)Ade ty -A Attt a0 -' a1'""' A1

If we introduce the action variable H = H(J,L) and angle

variable rl, this equation can be rewritten in the form

K(r,l)#= eF@= ,*^, #, (16)

where

Carrying out the differentiation with respect to ),, we

can write the RHS of eq. (16) in the form

ZFQ\: *I l4* o,).f'dn dL ctL

* r.*44 * b"tF? * b, q4'. (r8)' "3duMr' "' aH, "t aH

The coefficients ar, az, b1, b2arrd b3 are functions ofIl,
L, and 8. The solvable condition of eq. (15) yields

(sh r'o' : (a2l t # ^ # + (a,lo h #
+(bz)o ffi* ru,r"

= L x(t,l)tr
#,r,,"#

K(J,).)=!yr#-*## |o7)

Such an expansion may not be validated unless the ac-

tion variable.Fl is properly chosen. Since the orbit has

different topology depending on the presence of transi-

tion point, the choice of the variable I1 has to be made

separately for each case.

4.1 Orbit With Transition Point
Suppose the orbit curve J(ry,\A.) = const. crosses

the curve LB^*(V,A = I at the points (yr,tQ), which are

called as transition points. At the points, the distribution

function of ripple-trapped particle is equal to that of
passing particles. If we choose as

Then we have

g = ty,(J,h).

F'60) (H) = fo(w).

The correction F{o) ir determined by eq. (23), where

6p = -fo{h(o,) - heill. Q7)

4.2 Orbit Without Transition Point
When the collisionless orbit has no transition point,

the distribution function is periodic with respect to t);
i.e. AF = 0. Such orbit may exists in both sides of the

orbit with transition points. We choose 11 so that the

coefficients a2 and ay are small enough. For instance, we

choose such that
(1e)

618



Todoroki J. et al., Effect of Finite Deviation of Super-Banana Orbit from Magnetic Surface on Neoclassical Transport in Helical Torus

If the curve II - constant crosses the boundary curve
with the region with transition points, the function Fjo)
is determinecl from the continuitv condition at the
boundary.

The corrr:ction F{ol it determined from eq. (23)

with proper bc,undary conditions.

5. Transport Flux in Collisionless Regime
The transport flux for the mono-energetic particles

is obtained by the integral

(2e)

where F(r) is solved from eq. (16). The integral is car-
ried over the fixed magnetic surface. If we consider the

case that the helical ripple is small, the part of the
ripple-trapped particle with transition gives the main
contribution fc,r the transport flux.

Since the right hand side of eq. (16) is expressed by
the linear combination

g F'o'= L,![! * y.tfo- 'aH 'aH, (30)

of t4. Thus, we obtain the expression

(3+1

where

-ldJl
dH 1,,^

(35)

for j = 1, 2. Carrying out the integration of the second

term by parts, we can write

^tYt'f =oriw,w?:-* J awv.tw,w #.. (36)... . .dVf 
wL

The transport flux cannot be expressed by single coeffi-
cient. Since Z; is proportional to the collision frequency,
the obtained flux is proportional to the collisionality.

6. Summary
Even in the low collisionality case, the distribution

function cannot be expanded in power series of collision
frequency. In the part of the phase space where the two
orbits with different topology are proximate the
boundary layer appears.

The distribution function of the passing particles is

essentially local Maxwellian with small deviation. The
part of distribution function of the ripple-trapped
particles is determined by the transition point, In the

collisionality regime (alr < v"6 ( tv1 / R) the local
diffusion coefficient inversely proportional to collision
frequency is obtained. In the very low collisionality
regime (v"ri ( al1), the transport flux has nonlocal
expression, proportional to the collisionality. In the
collisionality between these two limits the analytic
expression for the transport flux cannot be obtained.
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dJl:
d^ l,

r=fae Iat"r"'+#,

H=Qy#)"
#l^ \,u),

(j =1,2).

(28)

(32)

Y a, '" )2t, = 
J,orr, 

v.v) #. l, 
av%, (v,v) 

#!v.2,

vi gt,H)= ![ al"nr,

we can also express F(r) in the form

F," = og,(H.O,),1%.* gr(H,5,D93 trtl
where ar1^t^ *-" oo.',1n"0 ty rorning *11*",,""

^ Aat.
K(J.^)-ai-= L

The transport flux across the magnetic flux can be ob-

tained as

r= 
[ao I u"r,<r.rt.^ri##

*Jo,r ! ata,ru,,t,b+## (33)

The integration with respect to 0 is transformed into the

integral with respect to I/, which is expressed in terms
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