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Abstract
It is proved that the global magnetic helicity is not invariant, even in an ideally conducting MHD

plasma. A novel general theory is presented in which a variety of self-organized states in open and

dissipative dynamical systems with various fluctuations can be found. This theory is based on the

principle that the self-organized states must be those states for which the rate of change of global auto-

correlations for multiple dynamical field quantities, which depend on multidimensional mutually
independent variables, is minimized. One of the important points of this theory is that the original
generalized dynamic equations are embedded in the final equivalent definition for the self-organized
states, and therefore the equations deduced from the final equivalent definition include all the time
evolution characteristics of the dynamical system of interest. Since states derived from the Euler-
Lagrange equations with the use of variational calculus have minimal rates of change of the global auto-

correlations, they are most stable and unchangeable compared with other states.
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A subsequent version of this theory of self-
organization was developed, based on auto-correlations

ofphysical quantities, which includes the Taylor state as

a limiting case [8,9]. In the present paper, we prove that

the global magnetic helicity is not an invariant even in
ideally conducting MHD plasmas and that therefore the

Taylor relaxation process never occurs physically in real

experimental plasmas and simulations. Furthermore, we
present a novel general theory for how to find self-
organized states in open and dissipative dynamical
systems. This theory is applicable to various nonlinear
dynamical systems and reproduces the Taylor state as a

limiting case [5-12]. We also show some applications of
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1. Introduction
After J.B. Taylor published his famous theory [1]

to explain the appearance of the reversed field pinch

configuration [2], global magnetic helicity has been

believed to play an important role as a global invariant
in the self-organization process and relaxation
phenomena of magnetized plasmas. However, another

model (a partially relaxed state model) has been

proposed to explain the reversed field pinch
experimental data [3-7]; and the partially relaxed state

model and the mode transition point of the self-
organized state were deduced from the energy integral,

without the assumption that the global magnetic helicity
is invariant.
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the present theory to dissipative Korteweg-deVries
solitons, incornpressible viscous fluids and dissipative
MHD plasmas

2. The Proof of the Non-lnvariance of
Global Magnetic Helicity Eeven in ldeal
MHD Plasmas
J.B. Taylor's theory is based on Maxwell's

equations for -he electric and magnetic fields. He has

introduced the global magnetic helicity K [1], defined in
a volume V bcunded by an ideally conducting surface,

and derived thr: time derivative of K. as follows:

Taylor's theorr involves the following two conjectures

of (A) and (B)
(A) Since magnetic fields are frozen in an ideal

MHD plasma <luring its local flow, the global magnetic
helicity Kis considered to be conserved as a topological
quantity of ttLe magnetic field lines. By using the
simplified Ohrn's law of \j = E + v x B and putting
resistivity 4 = 0, one finds that the volume integral of
E . B for every flux tube is zero. Then the volume
integral term in eq. (2) vanishes. Since E . dS is zeto at

an ideally conducting surface, the time derivative of K is
zero in an ideal MHD plasma. Thus, by this argument, K
is considered 1o be conserved as an invariant in ideal
MHD plasmas.

(B) Wherr the resistivity 4 is small but finite,
reconnection of magnetic field lines can take place.

However, it is :onjectured that the global helicity K can

be treated as a:r invariant during the relaxation process

in a non-ideal IvIHD plasma, because the resistive decay

of the total mallnetic energy inside an ideally conducting
wall is faster ;han the decay of K. Using variational
calculus with the global constraint K = const., J.B.
Taylor derived the relaxed state of VxB = /,^B [1] from
the Euler-Lagrange equation. This result had been

previously obtained by S. Chandrasekhar and L. Woltjer
for states with minimum dissipation of magnetic
energies, also .vith the use of variational calculus [13].
Taylor's logic, described in the preceding paragraph, is,
however, not based on either a variational principle or
an energy prinr:iple. It is commonly known that the use

of either a variational principle [14] or an energy
principle [15] l,:ads to dynamical equations that give the

time evolution of the dynamic.al system of interest, as

shown in classical mechanics theory [14] and the well-
known dynamical equations for perturbed elements in an

ideal MHD plasma [15].
We now prove that both of two Taylor's

conjectures (A) and (B) shown above, are not physically
accessible. In order to find the time change of K in an

ideal MHD plasma, we must retum to eq. (2) and check
the volume integral term more carefully. From the scalar
product of the generalized Ohm's law for a fully ionized
plasmas in the limit of zero resistivity 4, we can derive
the volume integral term of eq. (2) as follows,

I m7
- tJ4Q"-"fi- n)Yn"l'BIdv ' (3)

where the usual notations for plasma physics quantities,

such as the number density of electrons n., and electron
and ion pressurespe andpi, are used. Also, the boundary
conditions ^B 

. dS = 0 and V . B = O at an ideally con-
ducting wall were used in obtaining eq. (3). Since all the
volume integral terms on the right-hand side of eq. (3),

determined by local physical quantities, can usually
have either positive or negative values for turbulent
plasmas, we easily confirm that the time rate of change

of K can be either positive or negative (the possibility of
being zero is statistically negligible). Therefore one can-

not definitely conclude that K is a physical invariant,
even within an ideal MHD plasma. Since rK is never in-
variant during local plasma flows or relaxation even in
an ideal MHD plasma, the global constraint that uses K
has no power to limit the relaxation process itself within
an MHD plasma. The mathematical procedure in conjec-

ture (B) is simple calculus to find a group of solutions
having minimum magnetic energy within a wider set of
solutions having the same value of K. We should notice
that after the configuration of the magnetic field lines in
a plasma is determined, the value of a topological quan-

tity can be calculated, but the value itself has no power

inversely to determine the configuration of field lines.
Without using topological quantities such as K, we are

able to derive the Taylor state of VxB = LB, starting
from the fundamental definition of the self-oreanized
states [9].

Owing to Taylor's theory, several theories have
appeared to use topological invariants and have
minimized energy or maximize entropy to obtainself-

fi [,n nav

=hl,l##
* = LA.Bdv. (1)

# =- fr [,n na, * h{ tt "al' os, (z)
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organized states [6,17]. However, as is proved above,

those topological invariants have no power to determine

the relaxed states, and therefore we need other logical
principle for new self-organization theory applicable to

any dissipative dynamical systems.

3. A General Theory of Self-Organization
We develop here a novel basic formulation of a

general theory to find self-organized states that is an

extension of the theory in Ref. [9]. It should be

emphasized that the present theory, which uses auto-

correlations for dynamical quantities, is not based on

either a variational principle or an energy principle, and

also that the global auto-correlations are not time
invariants.

We consider a set of N dynamical variables q =
ql€kl = (qrf.Eol, ..., q*[€k]), with M-dimensional
independent variables t6ol (k = 1,2, ..., M), which may

include time, space, and velocity in distribution
functions, or prices, amount of materials, budgets for
production systems, and other such various variables.

Using generalized symbolic dynamical operators, we

may write the general nonlinear N-set simultaneous

equations for an open or a closed dynamical system as

aqJ€ol/a€i = ollql, (4)

where Df[C1 U = 1,2, ..., N) represents dissipativeor

non-dissipative, linear or nonlinear operators for the

change of a dynamical variable q; along an independent

variable |i. Aftet multiplying qil€kl on both sides of eq.

(4) and integrating over the independent variables [{r]
(k + j), we obtain "conservation laws" for all the dy-

namical variables 4; as follows:

t f r

.d,, llq?lJo*,1 Ilo6o=nartL"K+l

I o,ot,lillto,,lf!a(o' (5)

Here, the dynamical system of interest always has

fluctuations of the dynamical variables 4r[{t] along the

axis of the variable Ei. fne fluctuations may have

several characteristic lengths in different orders along

(j, one of which is expressed as ?"1. The characteristic

length r"1 may give the ordering of the relaxation time

scale. From the standpoint of observations, the self-
organized relaxed states are identified by the following
definition (6), hereafter noted as Def. (6), with the use

of auto-correlations between the dynamical variables

q,[(i] and qilli + (Aeilr")), where the increase of f,i
for 4; is normalized by ?ci, as

minl
I q,l€' lq,t€i + (L(i I r",;11J o *i lil o*1 d(o

I t q, I€o l)' lJ o*i lil o*i d€o

_ 1l . (6)

Using Taylor expansion for Def. (6), we obtain the fol-
lowing equivalent definition Def. (7) for the self-orga-

nized states from the first order of L(i/t"i. Substituting

the original dynamical eqs. (4) into Def. (7), we obtain

the final definition Def. (8) for the self-organized states.

! q, t 4' l@q, I€i lt d€i I J k* i lfl k*j d€k l. (7)minl

min I

(r 
"i/ 

L€i ) I @, [€ 
o l)' I J o *, lil o *i d€o

I q, l€i loi lill t o* 1il o*i d€o

(t 
"tl 

LEi ) I @, I€o l)' I I o*, lil o*i d€o

It should be emphasized that all of the dynamical

laws, characteized by the nonlinear simultaneous

system of equations, eq. (4), are embedded in the

equivalent definition, Def. (8). Since the nonlinear set of
N simultaneous equations, eq. (4), connect mutually the

set of N dyamical variables qi€kl U = 1.2, .... N), the

mathematical expressions of Defs. (7) and (8) are

obtained by variational calculus with the use of
functionals F with Lagrange multipliers L; as follows

,- I' Ltdol€01''-J 7rz ati
t^, n+;i L,q,[€ol'llto* 1Eo€r ' (9)

- fu l'q'l€ol']lto.'IEdft' (10)

u, = J' T tdc, I€r sroilql

. I', 1, q,I€oD+ q,l€o)6<oi1q1

. & 1, q,lloDllto*,180€o =o , (11)

u.o = J 2{aq,Gr\aoigl

.# h,6q,[€o])llto* 1Eo€r >0,(rz)

(8)

, = I 1{q,t€rto!tqt
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where the fun<tional given in eq. (10) is used in the first
step; dF and t:zF are, respectively, the first and the sec-

ond variations of F; and the variational calculus is per-
formed with r:spect to the dynamical variables 4, that
depend on the variables fr except k =j.

By mears of repeated partial integration and

application of the boundary conditions, we eventually
obtain the sirnplest expression for the terms of the

operator Dflfl, wtrictr we denote by Df#[4]; this
reduction had been previously reported in [7,8]. In terms

of this notatiorL, the condition for the marginal minimum
for arbitrary variation 6q,l€oo*;l is given by eq. (13)
from eq. (12) rLs follows.

5o!r lql + (t",/ [€t) 1,5q,[€o] =0 , (13)

Substituting e<1. (13) into eq. (11), we obtain the Euler-
Lagrange equation, eq. (14), for arbitrary variation d4.

olnl,ql+ (r",1 L(i ) L,e,[6ol=o . (14)

Equation (14) ;an be written as the eigenvalue equation
with boundary conditions for 6q,l(f*), viz., Dflul +
(r"ilL€j)Li-un"[€o] = 0, where u,^fik) and Li^ are the

normalized eig;envalue solutions and their eigenvalues,

respectively, u,ith the appropriate normalization written
as I u,^[(kl u,^l€kllJr*ilfIo*id€o = 6*, as was reported

in [7,8]. Substituting one ofthese eigensolutions into eq.

(12) and usinE the eigenvalue equation, we obtain the

following

ar- S T.,o-f=?jfi\4,^
:

- 1,, | 1u,^f?o))' llto*, 1 Eu€r > o, (15)

Since eq. 1tS; is requi."d for all eigenvalues. we obtain
the following < ondition for the self-organized state with
the minimum rate of change:

O<Li<Lir, (16)

where l.;1 is tte smallest positive eigenvalue and ,1,; is
taken to be positive.

On the other hand, when we use eq. (9) in the
second step, w) obtain another functional F and its first
variation 6F, e'1. (17), beeing equivalent to eqs. (10) and
(ll), their Etler-Lagrange equations, eq. (18), for
arbitrary variations 6q,LEf,*,1, and their final solutions,
eq. (19), as fol ows:

fs
6F= | 4{an,[€1,1\aq,l€I.jl/a€i":

. fu 21, q,l€t*il)]lJo*j I EuEr = o,(17)

AqJ€l.ilta€t * fu 2)",q,[(f*) =0, (18)

q,L€l*il=expG2li€i) q,l€1, €!,*i , (19)

where (6 is the initial value of (i atthe self-organized
states.The new theory presented here is a natural logical
extension ofthe theories reported in [7,8,10] to the gen-

eral nonlinear set ofN simultaneous equations expressed

by eq. (4).

4. Applications of the General Theory of
Self-Organization

We show here three typical applications of the
general theory shown above,in order to demonstrate the

usefulness of the present theory.

When we apply the general theory to the Korteweg-
deVries equation of eq. (20) with a dissipative viscosity
v term, we obtain the following analytical self-organized
soliton solutions ofeq. (21) from eq. (19)

duldt = - 6u(du/dx) - 03u /dx3 + vd2uldx2 . (20)

u# (t, x) = expf -zLt + i ()"1 v)tt2l u# (to, x0) . el)

It should be empasized here that the analytical solution
eq. (21) coincides very well with the simulations re-
ported in I l].

Second application is to a dynamical system of the

incompressible viscous fluid written by eq. (22) with the
periodic boundary condition with edge length I in x, y
plane, and have obtained analytical solution for the self-
organized state ro#, eq. (23), as

dotldt=-(u. V) ar+ vy2a, (22)

at* (t , x,y ) = exp (-4n2vt )
lcos2xxo+cos2trylk, (23)

where o - Y xu, Y'V = a, and the relation of at and the

flow function ry at the relaxed state is given by rrr =
4my. Using computer simulations with quite long effec-
tive computation time compared with the simulation
data in [18] more than l0 times longer, we have con-
firmed that the analytical solution of eq. (23) agrees
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very well with numerical data, which will be appear

elsewhere.

Third application is to compressible resistive and

viscid MHD fusion plasmas. Using the generalized

Navier-Stokes equation, Faraday's law, the energy

conservation, and the generaliec Ohm's law, we obtain

the nonlinear simultaneous dynamical equations, i. e.,

the three power balance equations for kinetic flow
energy, magnetic field enegy, and internal thermal
energy. Using the condition for the marginal minimun

eq. (13), and resubmitting this condition into the 1st

variation 6F, we obtain the three Euler-Lagrange
equations for the three dynamical equations:

*Y.tp^u\- pn +vxB2 ""' Ito

* (* * D(k"V xB +vp)

- ^.? V"P+yvxVxz
Foe'n dt

+V x lVvx ")-+vY(Y.u)
-!vv<v.u)-v(vv.u)

+uY2v=^"ry. Q4)

*ffivr#= ;*n. (2s)

hr, @u)+(y-r)pv'ul

-*,o x'l.(tvrB - kro *ffi'J,,
-V.(rcvf )= 1",<J-'1.

' I- L
(26)

An important point of the self-organized states, derived

by the present theory shown above, is that the configura-

tions of the relaxed states gradually change in time, and

the changed states shall become unstable to repeat again

the relaxation process, just as observed in experimental

fusion plasmas and the simulation data which have been

reported so far. From eq. (25), we obtain V x V x B =
QtolnY"nB for a limiting case with uniform resistivity, z

= 0 and quasisteady pressureless plasma. This result in-

cludes the Tavlor state of Y x B = hB.

5. Goncluding Remarks
We have proved that the global magnetic helicity is

not invariant, even in an ideal MHD plasma, and that

therefore the global constraint using helicity has no

power to limit the relaxation process to lead to any self-

organized states in plasmas. We have also established a

new general theory to find self-organized states, which

includes all dynamical laws given by the nonlinear

simultaneous general dynamic equations, eq. (4),

because those equations are embedded in the

formulation. Since the general theory leads relaxed

states haveing minimal rates of change of the global

auto-correlations, they are most stable and unchangeable

compared with other states. We have shown three

applications to demonstrate that the new general theory

of self-organization is very useful for various dynamical

systems.
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