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Abstract
It is proposed to use the mathematical modeling of the increments of fluctuating plasma variables to

analyzing the probability characteristics of turbulent transport processes in plasma. It is shown that, in
plasma of the L-2M stellarator and the TAU-l linear device, the increments of the process of local
fluctuating particle flux are stochastic in nature and their distribution is a scale mixture of Gaussians.
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1. Introduction
In the last years, attention is drawn to studies of the

probability characteristics of turbulent transport in
plasma, in particular, to the analysis of local fluctuating
particle fluxes in a magnetoactive plasma produced both
in toroidal and in linear devices [1-3]. However, the
authors usually restrict themselves to the calculation and

description of characteristics of the probability density
function (PDF) of the turbulent particle flux, with a final
conclusion that the distribution deviates from a Gaussian

(normal) distribution. Until the present time, there have

been no attempts to discuss the mechanisms responsible

for the characteristic features of the PDF of fluctuating
particle flux in plasma. Only in the recent papers [4-6],
attempts were made to relate the statistical-probability
characteristics of fluctuating fluxes to the nonlinear
wave processes in plasma.

2. Experimental Results
In this paper, we will consider the problem of the

correct (from the standpoint of mathematical statistics)

processing of experimental data on turbulent plasma

fluctuations using as an example the measured local
turbulent fluxes in the L-2M stellarator and the TAU-1
linear device and will discuss in more detail the
resultant statistical characteristics of the turbulent
processes under study. The parameters of these devices

and plasma are presented in refs. [3,7]. The main
distinctions are the magnetic field topology (the toroidal
field in the L-2M, the homogeneous field in the TAU-1)
and essentially different values of the electron
temperature (I" = 0.6-1.0 keV in the L-2M andT"- 5-7

eV in the TAU-l). On the other hand, as was shown in
the previous experiments [5], the spectral and statistical
plasma fluctuation characteristics are very similar in
both devices. Let us consider the probability
characteristics of the local fluctuating particle flux
obtained in the course of data processing. Before
proceeding to a consideration, we define the local
fluctuating particle flux as f = 16n.,6v.), where
variables are measured by a 3-tip probe [3]. dn" denotes
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the plasma density fluctuations (measured by one tip),
6v, = 58113 is expressed through the fluctuation of the
poloidal electric field dEe = (6er - 6rp)lrL@, wherc
5tp1.2 are the fl,rctuations of the plasma floating potential
(measured by two tips spaced by 4 mm in poloidal
direction), and @ is the poloidal angular coordinate, and

r is the mean radius of the magnetic surface. The signal
sampling rate was I MHz and was high enough for
fluctuations vrith frequencies up to 200 kHz to be

identified with high accuracy (5 points per period). This
frequency ranf]e corresponds to MHD fluctuations due

to the interchange resistive ballooning instability in L-
2M t3l and to Jre drift-dissipative gradient instability in
TAU-I [7].

Figure I shows the autocorrelation functions (ACF)
of the flux i and its increment Ai = 4(tj) - /-r_r (!_r),

respectively. It is seen that, within the time window, the

ACF for F does not attain the noise level, whereas the

ACF for A.F attains this level in several microseconds.

The slow decrease of the ACF of -l testifies that the
flux amplituces do not represent a homogeneous

independent sample, whereas the rapid drop in the ACF
of Ai indicatr:s a random character of the increments

and their indep'endence. It follows from here that, when

the conventional techniques of probability analysis are

used to study plasma fluctuations, one should use the

increments of the fluctuating flux instead of the flux
amplitudes. Fi.gure 2 shows the PDFs of the process of
the local fluctuating particle flux and its incremental

values in the L-zM (Figs. 2(a) and 2(c)) and TAU-I
(Figs. 2(b) and 2(d)). Also shown in the figures are the

asymmetry coefficient M3 and excess Mot for the
corresponding PDFs. The PDF of the process i 6lgs.
2(a) and 2(c)) ,lemonstrates a noticeable deviation from
the Gaussian lrw. What is even more interesting is that

both distributions of A.F deviate from the normal
Gaussian PDF. The characteristic feature of the process

A.- is that its PDF is symmetric, which indicates a

dynamic symnretry of the flux increments. The excess

values for the l)DF of the process Ai are equal to Mo =
9 inL-2M and M4 = 7 in TAU-I. Note, the histogram in
Fig. 2(d) shows the best correlation with the Laplacian
probability density distribution which has Ms = 0 and,

Mq= 6'

In Fig. 3(rD, this histogram of the amplitudes of the

increments of the local flux in TAU-1 (see Fig. 2(d)) is
approximated by a Laplacian distribution. The two
curves differ by only several percent, and the
peakedness of the PDF is described better by the
Laplacian process than by the Gaussian distribution
which is also shown in the figure. From Fig. 3(b), it is
obvious that the Gaussian distribution is inappropriate
for describing the heavy tail in the histogram of the
amplitudes of the local flux increments.

The Laplacian probability density distribution
(correct to the scale length parameter) can be

represented as a scale mixture of Gaussians with the

exponential mixing distribution. Thus, if l(r) is a

Laplacian distribution function
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Fig. 1 Autocorrelation functions (ACF) of the local fluc-
tuating particle flux F and its increments AF for
the L-2M device.
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I For a Ggaussian process represented"by the sample
(-rr,...,r,nr), the kurtosis is M3 = tlNllxi - 7126f3 =
0 and the excess is Mq = llN\tx1 - rtfia = 3 (where )(
is the standard deviation).
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Fig. 2 Probability density function (PDF): (a) PDF of i for
L-2M; (b) PDF for -F for TAU-1; (c) PDF of ai for L-
2M; and (d) PDF of li for TAU-I.
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L (x)= + [' ,-'tiut 6*
^'12 J-
t_\I I'n', ".0 I

=( ), (1)
I t -!"-r", r >o I12 )

and @(x) is the standard normal distribution function

<D(x)=h 
I:"-u2rz6u , (2)

then the result is
fx -

L (x)= 
J, 

,E)e-odo, (3)

(see, e.g., ref. [8]). From here, we can conclude that,

each increment Af = f j - f j-, is a result of classical
(Brownian) diffusion from the point f-r to the point .f
occurring with its own diffusion coefficient o;. This im-
plies that the fluctuating flux varies with time according

to the diffusion law. In this case, as7 varies, the coeffi-
cient oj varies randomly, i.e., the diffusion coefficients

(a)
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Fig. 3 (a) Approximation of the histogram of the incre-
ments of the local flux in TAU-1 by a Laplacian
distribution, and (b) the comparison of a Gaussian
distribution with the tail of the histogram of the
increments.

oj(i>l) are random values that obey the exponential

distribution (see refs. tll-t3l). Note that the Gaussian

distribution has the highest entropy among all the laws

with a definite second moment which are concentrated

on the non-negative axis; this distribution corresponds to

stable states in open systems. Naturally, both plasma de-

vices are open (in the terms of thermodynamics) sys-

tems for which the duration of dynamic equilibrium of
macroscopic plasma parameters substantially exceeds

the characteristic fluctuation times. In the TAU-1 ex-

periment, when the time interval between the successive

measurements 44 - t1 - t;r is as short as l-5 ps, the

PDF for the incremental values is the Laplacian distribu-

tion. Hence, this time interval is characteristic of the lo-

cal flux associated with the drift-dissipative instability.
The variations in the local particle flux determined by
drift motions occur on a time scale at least one order of
magnitude shorter than the characteristic drift-motion
times (the period, the growth rate).

We can also assume that, in the general case, the

fluctuating particle flux .F is a doubly stochastic
diffusion process (or, in other terms, the diffusion
process with random time). As is known, such processes

result from the passage to the limit in the generalized

Cox processes [9]. In this case, the incremental
distributions of individual processes are the scale

mixtures of Gaussians, which is confirmed in our case

by the statistical analysis of AF. Another argument is

that the PDF of the increments of the drift particle flux
in TAU-l transforms to a Gaussian with increasing A4

up to 100 ps. The longer the sampling time, the lower
the contribution to the PDF from the processes

determined by the influencing functions. The PDF for
Af approaches the normal (Gaussian) distribution,
which corresponds to the asymptotic of the generalized

Cox processes [10]. The probability for large (more that

3 standard deviations) variations in the local flux
increments distributed by the Laplacian law is many

times higher than that for the Gaussian law. In other

words, the probability of the experimental observation

of ultrafast increments of the local flux increases.

Figure 4 shows the time evolution of the wavelet

spectra of both the flux driven by the drift instability
and the flux increments in TAU-I. These time-
dependent spectra are compiled from 100 spectra
computed for successive 2OO 1ts time intervals. The

amplitude of spectral components is shown by shades of
gray. The frequency corresponding to the wavelet
duration is plotted on the abscissa, and the time is
plotted on the ordinate. The spectra of .F and A,F vary
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Fig. 4 Time beravior of the wavelet-spectra of (a) the lo-
cal flux and (b) its increments in the TAU-1 device.

substantially with time, whereas the macroscopic plasma

parameters do not change. It is seen that the local flux in
TAU-I and th: increments of this flux are intermittent
and exist as "lrng" events with pauses between them. In
Fig. 4, these events correspond to intense random dark

zones that lopresent the wavelet harmonics. The

characteristic <luration of the local flux events is -1 ms,

and the pauser, between them are shorter. The physical

mechanisms re sponsible for the random character of the

dynamical characteristics of the local flux (such as the

growth and damping rates) and the values of the local
flux increments are described in ref. [1].

3. Gonclusions
(i) The corre:t statistical analysis of the characteristics

of fluctuating particle fluxes in plasma should be carried

out with an e:quidistant sample of the process Af,
namely, the sample of the flux increments.
(ii) The increnents of the local fluxes in the L-2M and

TAU-I device'; are stochastic in character and the PDFs

of increments are the scale mixtures of Gaussians. The

PDF of the increments corresponds to a Laplacian distri-
bution in case of the drift turbulence.
(iii) The correot statistical analysis of the local fluctuat-

ing particle flux carried out with an equidistant sample

of the increments made it possible to determine the
characteristic (dynamic) time of the local particle fluxes

in the L-2M eLnd TAU-I plasmas. In both cases, this

time turns out to be one order of masnitude shorter than
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the characteristic correlation time.
(iv) Physical mechanisms responsible for the random

character of the time-dependent parameters of the local
flux in plasmas can be related to the nonlinear processes

suppressing the growth of unstable oscillations, stochastic

particle heating, and the formation of nonlinear structures.

Taking account of the processes mentioned above,

we can formulate several problems for future investiga-

tions. What are the characteristics of the local turbulence

in the transport barriers in toroidal confinement
systems? Do the turbulent plasma states under study

belong to the systems with dynamic chaos? Can the
transitions in such systems be controlled with the help

of regular waves? As an example, when a regular
controlling wave at the characteristic drift frequency and

phase was launched into the plasma, a broad drift mode

spectrum transformed to a single-mode spectrum [2].
Finally, we note that, although we have considered the

processes of particle diffusion, the approach proposed

can apparently be used to analyze heat transport
processes in toroidal confinement systems.

This work was supported by the Russian Founda-

tion for Basic Research (project no. 00-02- 17501).
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