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Abstract
Nonlinear behaviors of a magnetohydrodynamic (MHD) plasma in the Large Helical Device (LHD)

are investigated by means of a numerical simulation. Computations for a configuration with the radius of
the vacuum magnetic axis R* = 3.6 m are conducted under the stellarator symmetry. The MHD plasma is

observed to be dominated by a ballooning instability. Simulations with several cases of resistivities show

that tho saturation levels of the plasma kinetic energy are nearly proportional to the resistivity. The

numerical results are compared with our previous simulation results on Ru= 3.7 m. The saturation levels

are fotrnd to be almost comparable between the two configurations, although the R"* = 3.7 m
configuration is more magnetically hilly and Mercier-unstable. Pressure budget analysis shows that

viscous heating plays a key role in making pressure deformations saturated.
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1. lntroduction
Understanding of complex nonlinear behaviors of

an MHD plasma is important for achievement of
successful confinement of plasmas in fusion devices.

Numerical simulation is one of the most powerful and

successful approaches to investigate the subject. Though

huge memory and long computational time are

necessary for a nonlinear simulation on a helical device

with fully three-dimensional (3D) geometry, recent

development of high-perforrnance supercomputers has

enabled us to conduct such a large computation.
Recently, we have developed a numerical code to
simulate full 3D, compressible and dissipative MHD
equations in a helical device [1]. Our previous

simulations on a LHD configuration with the magnetic

axis at Ru* = 3.7 m [2], under the stellarator symmetry,

has shown excitation of unstable modes, which are

dominated by the resistive ballooning instability, and

saturation of the excited modes,
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In this paper, we aim to investigate full 3D
nonlinear behaviors of an MHD plasma in the LHD with
the magnetic axis at R* = 3.6 m and compare with the

results of the previous simulations with R"* = 3.7 m.

While it is known that at LHD configuration becomes

more magnetically hilly and Mercier-unstable as the

magnetic axis is shifted inwardly [3], a series of
experiments with Ru* = 3.6 m reports a better
confinement than a Ru* = 3.7 m configuration [4]. We

expect that a comparison of Ru^ = 3.6 m and 3.7 m
simulations allows us to investigate why and how a

good confinement is achieved with Ro = 3.6 m magnetic

axis from a viewpoint of nonlinear MHD.
In Sec. 2, the outline of our simulations is

described. In Sec. 3, numerical results by our nonlinear

simulations are shown. We investigate growth of the

kinetic energy as an indicator of plasma fluctuation. We
pay also our special attention to pressure deformation
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because the pressure gradient should be the main source

to drive an instability in the system studied in this paper.

Summary is shown in Sec. 4.

2. Outlines of Simulations
We solve the fully-nonlinear, compressible and

resistive MHD equations in a full 3D geometry. The

stellarator symmetry is imposed in the toroidal direction.

We set the position of the vacuum magnetic axis to be

Ru* = 3.6 m. In our numerical code, we adopt 4th-order

accuracy discretization schemes both in time and space.

Number of grid points are 97 x 97 on a poloidal section

and 32 in the toroidal direction for a half-pitch period.

Refer to ref. 2 on details of our simulation code. (See

also ref. 5 on normalization of the MHD equations.)

In Fig. 1, profiles of an initial ideal equilibrium are

shown. This equilibrium is obtained by the use of the

HINT code [5]. An initial pressure profile is given by

p(Vr) = p(0) (l - y)2 where y is the initial normalized

toroidal flux. Figures l(a) and l(b) are the Poincar6

plots of magnetic lines on horizontally- and vertically-
elongated poloidal section, respectively. The outer side

of the torus is in the right-hand side. The profile of the

rotational transform, l, is shown in Fig. 1(c) as a

function of the mean plasma radius. From the

calculation of the specific volume, the core part of the

configuration has a property of magnetic well while the

edge region is magnetic hill. In Figs. 1(d) and 1(e),

bird's eyes views of the pressure and the toroidal current

on a poloidal section Q = nl2O (@ is the toroidal angle)

are shown, respectively. The central beta, Bs, is about

3.6 7o. Note that an initial equilibrium which is used in
ref. 2 is roughly described by Ru* = 3.7 m, the initial
pressure profile being p(r4) = p(0) (l - {)2 and B6= 4

Vo. Thls differences in the results of two series of
simulations compared in the next section are mainly
brought about by the difference in Ru" for the initial
equilibria.

(e)

Fig. 1 An initial equilibrium computed by the HINT code. The Poincar6 plot of the magnetic field lines on (a) the horizon-
tally-elongated poloidal section, (b) the vertically-elongated poloidal section. The outer side of the torus is in the
right-hand side. (c) The rotational transform plot. The abscissa is the mean plasma radius. Bird's eyes views of (d)

the pressure and (e) toroidal current on A = n/20 poloidal section.

(c)
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3. Nonlinear Simulations and Pressure
Deformations
In this section, we see numerical results of our

nonlinear full 3D simulations. In the MHD equations,

there are three intrinsic parameters: the conductivity 4
resistivity 4 and viscosity 1t.ln this paper, we fix r= 1

x 10-6 and F = 2 x l0-3 throughout this article and study

the influence of the resistivity by varying 4 from I x
10-6tolxlo-:.

In Fig. 2, we see time evolution of the averaged

kinetic energy per unit density Er= l/2 ('u; o;) (or is the

l-th component of the velocity vector and (.) represents

the volume average) for five values of the resistivity 4 -
I x 10-6, loua x 10-6, 10r/2 x 10-6, 103/a x 10-6 and I x
l0-5. It is observed that Ey grows almost exponentially
first, and begins to decay gradually for all of the five
resistivities. We shall see later that the exponential
growth in Fig. 2 is dominated by the ballooning
instability.

In Fig. 3(a), saturation levels o of the kinetic
energy growth are plotted as a function of the resistivity

4. Here we define the saturation level as the maximum

value of the kinetic energy. A least-square fitting shows

o n no'e. Thus o is almost proportional to 4. In Fig.

3(b), time evolutions of E11 with R* = 3.6 m (solid line)

and3.7 m (dashed line) are shown. The resistivity is 4 =
101/2 x 10-6 for both of the two simulations. We find that

E* of the Ru^ :: l.f m simulation grows faster than that

of the /?u^ = 3.J m simulation. It is a direct result of the

former configuration being more Mercier-unstable than

the latter. Note that the two kinetic energies saturate at

almost the same level despite the difference of the

growth rates. We checked the levels of o for three

values of resisr.ivity 4 - I x 10-6, l0ua x 10-6, and 10r/2 x
10-6 of R* = 3.7 m simulations and verified that o of R*
= 3.7 m simulations are comparable with those of R* =
3.6 m simulatrons. Furthermore, as we shall see in the

next paragraph, an instability observed in this article is

not destructive and a plasma confinement is recovered

in the latter slage of the simulations. These two facts

suggest that the saturation level of an instability is not

sensitive to a detailed value of Ru*, because of a

nonlinear property of an MHD plasma.

In Figs. 4(a) and (b), contour plots of the pressure

on horizontally- and vertically-elongated poloidal
sections at t .= l40O tA (tA is the Alfv6n time unit),
obtained by a simulation with \ = 101t2 x 10-6, are

shown, respectively. The outer side of the torus is in the

right-hand side. Contours are deformed in the course of
the time evoltrtion at around t = 2/3 resion where the
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Fig. 2 Time evolution of the averaged kinetic energy.
Thick dashed, thick dotted, thick solid, thin dotted,
thin dashed lines represent simulations with 4 = 1

x 10-6, 101/4 x 10-6, 101/2 x 10$ and 1034 x 10-6, and 1

x 10's, respectively.
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Fig.3 (a) Saturation level oas a function of the resistiv-
ity 4. Solid line represents o- 4ot. (b) A compari-
son of the kinetic energy growth between 4" = 3.6
m and 8", = 3.7 m simulations. Solid and dashed
lines represent 8", = 3.6 m and 8", = 3.7 m simula-
tions, respectively.
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Fig. 4 Contour plots of the pressure on horizontally- and
vertically-elongated poloidal sections. Outer side
of the torus is in the right-hand side to the paper.
The time stamp is t= 1200 ro in (a) and (b).

pressure gradient is the steepest, especially in the outer
side of the torus. Poloidal and toroidal Fourier mode
numbers are estimated to be 15 and 10, respectively.
Furthermore, pressure deformations are clearer on the

horizontally-elongated poloidal section than the
vertically-elongated poloidal section. An analysis which
is similar to that seen in Miura et al. [2] reveals that the
pressure deformations are dominated by the resistive
ballooning instability. It is also observed that plasma

confinement, for which the pressure profile becomes

broader, is recovered after a sufficiently long time
development.

Next, in order to clarify a physical mechanism
which drives or suppresses pressure deformations
observed in Fig. 4, we calculate volume integrals of the

rhs. terms of the pressure-budget equation as has been

done in ref. 2. In Fig. 5(a), the pressure flux,
compression, conduction, ohmic heating and viscous

heating terms are shown for the period 1000 zo ( I (
2000 11. It is clear that the viscous heating term (a
dashed line) dominates the pressure budget. Next, the

five terms are integrated for positive and negative values

separately and plotted in Fig. 5(b). It is clear that the

pressure flux term has the largest amplitude. It is

consistent with a result shown in Ref. 2, in which it is
shown that the pressure flux is a profile in phase with
the pressure fluctuation and drives pressure
deformations. Note that the viscous heating term grows
rapidly just before t = l4OO fa, when the kinetic energy

becomes maximum. A rapid growth just before the
nonlinear saturation suggests that the viscous heating
term plays a crucial role in the saturation.
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Fig.5 Pressure budget evaluation tor a q = 1012 x 10-6

simulation. The pressure flux, compression, ther-
mal conduction, ohmic heating and viscous heat-
ing terms are represented by solid line, dotted
line, dashed line, cross and triangles, respectively.
(a) Volume integration of the five terms in the
right-hand side of the pressure budget equation
over the system. (b) Volume integration of the five
terms for their positive and negative value re-
gions.

4. Concluding Remarks
We have conducted a series of nonlinear MHD

simulations on the LHD system with the position of the

magnetic axis R* = 3.6 m. Our simulations have shown
that the saturation level of the kinetic energy is nearly
proportional to 4: o* 4o'e. It implies that the saturation
level becomes sufficiently small when the resistivity
tends to a small value available in the LHD experiments,

suggesting that an instability observed in the
experiments can be quite mild. Although paying too
much attention to the precise value of the scaling
exponent 0.9 does not make sense because the number
of samples are small and and range of 4 is too short
(one decade), it still seems that the scaling exponent 0.9
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is much greater than a value expected from a growth
rate ofthe resistive ballooning instability 1/3. It suggests

that, in order to explain the behaviors of o, the

nonlinearity of the MHD equations (the viscous heating

effect, for example) should be taken into account. It is
worth emphasizing here again that the saturation levels

in the R* = 3.6 m simulations are almost comparable

with Ru, =3.7 m cases. So far as a system under the

stellarator syrnmetry is concerned, these two facts

suggest that a plasma can be confined even with a small
(shifted to inward) R* because of the nonlinear property

of aplasma.

This simulation research was conducted bv makins

use of the supercomputer NEC SX-4/64M2 in the theory

and computer simulationcenter of NIFS.
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