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Abstract
Considering magnetized homogeneous and inhomogeneous plasmas with weakly relativistic ions

and electrons we derive the dispersion relations by carrying out the usual mode analysis of the ion and

electron fluid equations. In addition, the reductive perturbation technique is employed to derive the

expressions for the phase velocities of the modes by using a small dimensionless expansion parameter t
for the dependent quantities. Three types of modes in inhomogeneous plasmas and two types of modes in
homogeneous plasmas are found to occur and usual mode analysis confirms their acoustic nature. In
homogeneous plasmas, the possibility of instability is predicted on the basis of mode analysis. The
conditions on modes propagation in the plasmas are achieved and the effects of various parameters on

their phase velocities are analyzed. It is suggested that all these modes should be taken into account for
the studies on solitons.
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1. Introduction
There are a variety of equations that govern the

evolution of nonlinear phenomena in plasmas. The

nonlinear phenomena that may be observed in higher-

regions of the near-Earth plasma can be of different
kinds e.g. heating type, parametric type etc. and another

important class of such phenomena is solitons [1].
Production and propagation of ion acoustic solitons

were studied by Ikezi [2], and Dahiya et al. l3l observed

their partial reflection from a negatively biased grid
immersed in the plasma. Later, Nishida [4] made

extensive studies on the soliton reflection from a planar

metallic plate, glass plate and metallic mesh.

For a weakly nonlinear and dispersive plasma, a

time-dependent perturbation leads to the well-known
Korteweg-deVries (K-dV) equation which describes

one-dimensional solitary waves (solitons). Using K-dV
equation, many researchers have studied the ion acoustic
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solitons in different plasma systems including the

relativistic plasmas [5-10] which can be realized in the

plasma sheet boundary layer of the Earth's magne-

tosphere, solar wind, solar flare and under the influence

of high-power laser radiation. However, most of the

studies on solitons are limited to some particular mode
(mainly fast mode), whereas other modes may also

occur in the plasmas under the effect of magnetic field
and can correspond to the solitons of different
behaviour. Therefore, our main concern in the present

paper is to study the different types of modes in
relativistic magnetized plasmas in view of soliton
propagation.

2. Basic Formulation: Fluid Equations
We consider a magnetized and spatially inhomo-

geneous plasma having weakly relativistic ions and
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electrons. The ratio ofparticle pressure to magnetic field
pressure (F) is taken to be small so that the diamagnetic

effect is small and a uniform extemal magnetic field B
(= Boz) along z-axis is assumed. The wave propagation

is considered to be in the (.x, z) plane. Under these

conditions, the following basic equations are obtained

for the ion and electron fluids.

0nt/0t+\'.(n1v)=O, (1)

n1 m1d(y1 t')ldt = - s ryeYQ + s n1e(vi x B)

- C1T1Yn1, Q)

- eoY2Q = e (ni - n") .

Here, eq. (1) is the continuity equation and eq.

(2) is the momentum equation for ion ("t = i and s = +)

and electron (,1 = e and s - -) fluids, with n, as the

density, mi as the Dass, v; as the fluid velocity, Ti = (l -
v2lc2)-u2 as the relativistic factor, Q as the specific heat

ratio and { as the kinetic temperature. Equation (3) is
the Poisson's equation with @ as the electrostatic
potential. It can be noted that the fluid equations for
electrons with rclativistic effect have been introduced in
place of their Boltzmann distribution, since the wave

velocity in the relativistic plasma can be comparable to
the electron therrmal velocity [7].

Now we carry out the usual mode analysis of eqs.

(1)-(3) to find the dispersion relation for linear waves.

The wave propagation is taken to be almost per-
pendicular to the direction of magnetic field (z-axis) so

that the ions and electrons can preserve the charge
neutrality. We assume all the perturbations of the form
of expft(kx - rot)l in (x, z) plane. Under these
conditions, we find the following equation when the

wave width is taken to be smaller in comparison to the

scale length of density inhomogeneity (dnslnyax, z <<

ft)

1 - I;=r" rooft{y,(a- kv)2

- aq2t@- kv) - lecjTjtmj

- lse {lf /n()m,1a - kv)2)no,Qo. } = 0 .

In eq. (4), ne is the unperturbed plasma density and ari
and Q are tho plasma frequency and cyclotron fre-
quency of the jth species, respectively. vr = u (v) is the

initial ion (electron) velocity in the,r-direction and ns.

and Qs. are the density and potential gradients in the z-
direction, respectively.

Solution of eq. (4) will give the relation between a)

and ft for the present case where ions as well electrons

are taken to be weakly relativistic in an inhomogeneous

magnetized plasma. If we consider a simplified case

where ions and electrons are nonrelativistic (v; = 0 and

Ti = l) and the plasma is homogeneous (ze. - 0 and @s.

= 0) and unmagnetized (Q = 0), the above equation

assumes the following form

I-@pj2lf@2-PcrTrlmrl

- awzlla2 - k2crT"lm"] = o . (5a)

If the electron mass ,??e is neglected in eq. (5a), the fol-
lowing relation between a and k is obtained

61ft=fC{ilmi+ C"T"lm1(l + l8L*2)lrt2. (5b)

This relation is same as obtained by Chen [eq. (4-
48) of ref. [1]l for ion waves in a plasma when the
Poisson's equation is taken into account and the
neutrality condition flt = fte is not used, except the
appearance of specific heat ratio C" which he took unity
for isothermal electrons. This relation is a dispersion
relation for ion waves showing their acoustic nature
where the inertia is provided by the ion mass and the

pressure by the electron temperature. However, the
contribution of finite electron mass to these ion acoustic

waves in the plasma is reflected through eq. (5a).

Moreover, since eq. (4) is a fourth-order equation in al

and ft, it will give four dispersion relations with due

corrections of the effects of finite electron mass,

relativistic speeds, inhomogeneity and magnetic field.
Subsequently, it is expected that four types of modes

will appear in the present plasma model.
Now to find the phase velocity relations of the

expected modes, we employ the reductive perturbation

technique ofnormalized basic fluid equations separately

for the homogeneous and inhomogeneous plasmas along
with the same normalization as used in ref. [10].

3(a). Homogeneous Plasma
For the homogeneous medium, the following

stretched co-ordinate system is introduced

€=ett2(k'r-A.t)
= eu2(rsinO + zcos? - Lt) ,

Tl = t3t2t. (6)

Here, ft is the unit vector along the direction of the wave
propagation that makes an angle 0,with the direction of
the magnetic field. /, is the phase velocity of ion acous-

(3)

(4)
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tic wave in (6, n) space and g is a small dimensionless

expansion parameter.

The quantities n, ne, Q, u,, ur, trz, vx, vy and v. can

be expanded around the equilibrium state in terms of t
as below

f =l+efr+e2fr+...,
8 = €8t + t2g2+ ... ,

h = E3t2hr + eh2 + ... ,

p1 =p + E'''pjr+ €2pjz+..., (7)

where/: (n, n"), I = (Q, u,, v,), h: (u, vy) and pi = (u",

v,) along with p - u or v.

Now the normalized form of the basic fluid eqs.

(1-3) gives the following relations in first-order
quantities at different orders of e along with the use of
eqs. (6) and (7).

Atordere: fl1-n.1=Q.

At order t3t2 :

(8a)

- Q, - bsin0)n1r6 * cos0 baE= 0, (8b)

szrsin0 Q4- smAby + srm sin9 nig= 0 , (8c)

- (L - bsin0)b41t srm cos9 niry

+ sncos0 Qg,=0 . (8d)

In the above equations, b = u (v) is ion (electron) fluid
velocity, s = + (-) for ion (electron) fluid, m = | (m,) for
ion (electron) fluid and sc = 2o (1) for ion (electron)

fluid, where rrt, = rrtilrrT", o = TtlT" and A = C)1/a;01. The

integration of eqs. (8) under the boundary conditions
that n, n. -+ I and Q, u* u", vy, vz -) 0 as { -+ *- yields

the following phase velocity relation for the ion acoustic

wave-

L= l(u + vm"lm)sin9
+ [(l + m,lm)(l + 2o\cos20

- (m"lm) (u - v)2sin20ltt21/71 + m"/mt1 (9)

It is evident from eq. (9) that two types of modes,

namely fast mode (Lp): corresponding to plus sign and

slow mode (.1,s): corresponding to minus sign are

possible in a magnetized homogeneous plasma having

weakly relativistic ions and electrons and their phase

velocities depend on u, v, o and 0.

3(b). Inhomogeneous Plasma
Usine the same stretched co-ordinates and the

perturbation of dependent quantities as taken in ref.

[10], we can obtain the following relations at different
orders of e.

At order et/2 : noE= Loe = QoE= 0 . (10a)

This equation indicates that the zeroth-order (unper-

turbed) quantities vary only with space not with time,

implying the inhomogeneity present in the plasma.

At order E: flt = fiet ,

At order t3t2 :

- (Lo - bsin9)ntry lLs

(10b)

+ nscosO b,1g/Ls+ Dsin0 nor=0, (10c)

brr = sinO Qg lALo + ssrsin0 n11g lAnshs

+ sin9 QsrlA + ssrsin? nsrlAns , (10d)

- no(Lo - bsin0)b41 l),o + srmcos9 n1c l),s
I smnscos9 Q14 /Lo + srmcos9 ns,

I smnocos9 Qort = 0 ,

At order E2 : ns sin9 bac l),o = 0 .

(10e)

(100

When we solve eqs. (10) for the first-order quantity

n1 , we obtain

nr= {(fmcos? + (Lo- vsinO)vsinO/cos0

+ 2omcos0 + (ho - usin9)musin9lcos9f
x nsnlllmcos1lLo - (Lo - vsin0)21),scos9

+ 2omcos1l),o - m(Lo - usin0)21)'scos0l .

Here, it can be noted that the left hand side is a first-or-

der term and the right hand side contains only the ze-

roth-order terms. Since a first-order term cannot be ex-

plicitly expressed in terms of only the zeroth-order

terms, the right hand side is made indeterminate by put-

ting separately the numerator and denominator equal to

zero. This process yields three relations for the phase

velocity /,s, out of which the two relations: correspond-

ing to the denominator, are the same as obtained in case

of homogeneous plasma [eq. (9)]. The third mode: cor-

responding to the numerator, has the following phase

velocity relation

L1 =f(u2 +v2m"lm)sin29

- (1 + 2o)cos201l1u + vm"lm)sin9. (11)
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4. Results and Discussion: Propagation of
Modes

To examine the propagation of modes, we analyze

the phase velocity relations (9) and (11). Relation (9)

shows that the phase velocity of the fast mode (2p) and

slow mode (/.r;) will be real if the quantity appearing in

the square roo1. term be positive, which reads

tan20 < (I + milm")(l + 2o)/(u - v)2 . (r2)

For the slow mode, the phase velocity 15 will be posi-

tive if the first term of R.H.S. of eq. (9) be greater than

the second one. This requirement leads to the following
condition

tan20) (1 + 2o)l(u2 + v2m"lm1) . (13)

The third type of mode shall propagate in the plasma if
the first term of eq. (l l) be greater than the second one.

This yields the same limiting condition on the wave
propagation angle 0, as given by eq. (13). Therefore, we

conclude the following on the basis of above inequali-
ties

1. For the propagation of the fast mode, the wave
propagation angle 0 has an upper limit, given by eq.

(12). For example, when o = O.O5, u = 45 (7O) and v =
55 the upper limit of the angle is 77.458o (71.546").

This limiting value is decreased for the higher ion
speeds and lower ion temperatures.

2. The slow mode can propagate only for the certain
range of angle 0 prescribed by eqs. (12) and (13). For

example, when o = 0.05, u = 45 (70) and v = 55, the

range is 1.330'< e<77.458" (0.858'< 0<71.546").
This range of t? is decreased for the higher ion speeds.

3. The third type of mode propagates only when the

wave propagation angle 0 exceeds the lower limit given

by eq. (13). For above set of values, this lower limit is
1.33o for ion streaming speed a = 45 and it is decreased

to 0.858' when u is increased to 70.

Now we study the effect of ion and electron
streaming speeds, ion to electron temperature ratio (o)
and the wave propagation angle 0 on the phase

velocities of the above three types of the modes. Figure
I shows the opposite behaviour of the phase velocities
of fast and slorv modes with electron streaming speed v.

Here, it is clear that the phase velocities have weak

28.425

28.42

28.415

28.41

28.40s

45 50 55 60 65 70

Electron Streaming Speed v

Fig. 1 Weak dependence of the phase velocities i, and
,1. of fast mode and slow mode, respectively, on
the electron streaming speed v. Here, o= 0.05, 0 =
30'and u = 55.

dependence on the electron speed, which is caused by
the electron mass r??e appearing together with v in the

phase velocity relations. It is evident from the figure that

in (1s) attains maximum (minimum) value when the

electron speed becomes almost equal to that of the ions.

This may be attributed to the energy exchange mech-
anism with the modes; however, one would have to take

up kinetic approach for the present plasma model to
examine such mechanism. For the third type of mode
also, it is seen that ).7 increases slowly from 27.4681 to
27.4752 when v is raised from 45 to 70. If we analyze

the effect of ion speed, the numerical calculations show

that,?,p increases rapidly from23.414 to 35.906 and.1.5

from 21.614 to 34.123 and L-1 from 22.466 to 34.973
when a is raised from 45 to 70. It can be noted here that
the magnitudes of ,1,p, 25 and /,1 follow lF > Lr > Ls.

Strong dependence of the phase velocities of all the

modes on wave-propagation angle 0 (in degrees) is
portrayed in Fig. 2. This figure shows that the phase

velocities of the modes get higher for the larger wave-
propagation angles and the magnitudes of the velocities
follow the same trend i.e. hp > h, > hr.Further, it is
easy to examine the effect of ion temperature (o) on ,1,p,

1.5 and ,l"t through eqs. (9) and (11). For higher ion
temperatures, the phase velocity of the fast mode
increases and those of the slow and third type of modes

get lower.

Now we analyze the results of reductive
perturbation technique and those of normal mode
analysis. Normal mode analysis shows the presence of
four types of modes in the present plasma model. Since
two real dispersion relations are inferred by the
reductive perturbation technique for the homogeneous
plasma, the other two roots may be complex and
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20 30 40 50

Wave Proapagation Angle 0 (Degree)

Fig. 2 Variation of the phase velocities LE, Ls and i1 of
fast mode, slow mode and third type of mode, re-
spectively, with the wave propagation angle 0.

Here, o= 0.05 and u = v= 55.

therefore instability may be expected in such a plasma

model. However, in inhomogeneous plasma, we cannot

expect the instability because three real dispersion
relations are obtained. Further, it is suggested that all the

modes should be taken into account while studying the

solitons in magnetized plasmas having weakly
relativistic ions and electrons, because they may

correspond to the solitons of different behaviour.
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