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Abstract
Feedback suppression of resistive wall modes (RWM) is studied analytically using a model based on

a standard cylindrical approximation. Optimal choice ofthe input signal for the feedback, effects related

to the geometry of the feedback active coils, RWM suppression in a configuration with ITER-like double

wall, are considered here. The widespread opinion that the feedback with poloidal sensors is better than

that with radial sensors is discussed. It is shown that for an ideal feedback system the best input signal

would be a combination of radial and poloidal perturbations measured inside the vessel.
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1. Introduction
Resistive wall modes (RWM) can limit achievable

beta below acceptable level in advanced tokamaks with
low internal inductances [-3]. Experiments in the DIII-
D tokamak show two directions for stabilizing the
RWM in high-beta tokamaks: toroidal plasma rotation
and active feedback control of the mode using magnetic

coils. At the presence ofthe uncorrected resonance error

field, the rotation alone cannot completely suppress the

instability, urging the need of the feedback suppression

for achieving high 0 tal.
Simulations show that a feedback control of RWM

can significantly raise the n = I ideal MHD beta limit,
up to B1 = 5, doubling the no-wall limit [3]. Though

theory was always optimistic, it took several years of
studies in DIII-D [1,4] before it was reported [5] that, in
experiments with active control, it became possible to

sustain a discharge at pressures approaching twice the

no-wall limit. This success in 2001 has been explained

[5] as resulted owing largely to an extensive new set of
magnetic sensors installed inside the vacuum vessel.

The problem of proper positioning and orientation

of magnetic sensors was earlier studied numerically

[2,3,5,6]. The conclusion, stated in ref. 12) and
confirmed in refs. t3,5,61, was that the feedback system

with sensors measuring the poloidal field is much better

than that with the radial-field sensors. With solid proofs,

including experimental confirmation [5], the conclusion

cannot raise any doubt. But some basic questions remain

unanswered. For example, it follows from divB = 0 that

poloidal and radial components of the plasma-produced

helical magnetic perturbation must be (approximately)

equal. Why then 'sensors measuring the poloidal field
perturbations are superior to radial sensors' [3]? Is it a

general rule or a property of the considered feedback

schemes? The problem is analyzed here analytically
using a model based on a standard cylindrical
approximation.

2. General Equations in Gylindrical
Approximation

Feedback stabilization of RWM is often
analyzed in cylindrical approximation [6-12]. Such
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analysis is in a good qualitative agreement with the
observed feedback characteristics in DIII-D tokamak

[6]. The use of cylindrical model is also justified by
comparison of the model predictions with results of
toroidal computations [9].

The perturbed magnetic field must be calculated
with account of currents in all active and passive
elements and with proper matching at the dividing
surfaces: plasma boundary, walls, and active coils. In
the model, the surfaces are coaxial cylinders.

In the vacuum gaps between the dividing surfaces,
the perturbed magnetic field can be described by its
radial component:

b,=2 boQ)exp(iko- in(+ yt).

(4)

where Bf*' = bfu'|,**o is the part of Bo due to the field
produced by all sources outside the wall: by other walls
at r > rw, if any, and by the feedback system.

With eq. ('1) and eq. (2) lead to

Here r, 0 and z = RC are the usual cylindrical coordi-
nates (2nR is the total length of the system), 7is the
growth rate, , is the time.

At the resistive wall, considered as a thin shell r =
r*, two conditions must be satisfied:

[r-]=0,[rui]=?Bo. e)
Here [X] = Xl'-**lis a jump in the function across the

I rw-0
wall, the prime is the radial derivative, i = TT*, r* =
lhcnd*r* is the time constant of the wall, o* and d- are,

respectively, its conductivity and thickness, B1 = b*(r*)
is the amplitude of the ft th harmonic of the perturbation

at the wall. More details are given in ref. [2].
The contributions of inner and outer sources to b,

have different l'adial behavior:

bi = 3'; t-*-r , bT'= B3'x*-t , (3)

where x = rlrwr K= lkl, and B;'and Bf;ut are the values of
bf and bt"' = bt - b'f at r - rw, respectively. These ex-
pressions, with continuity at r - r*, describe also the
self-field of the wall in the inner (r < r*) and outer re-
gions. Thus, at the outer side of the wall

rbtrl - .^ --(r+ l) Bo +2rBi't,^trw+u

2K lo x2*

2rc+ loll-*,*)
For plasma-facing wall, this gives |1 through rb'y'bp on
the outer plasma surface, x = alrw. The radial magnetic
field is a continuous function, the same is true for bi if
surface currents are absent. Then at x = alr* the left
hand side of eq. (7) is expressed through b, in the
plasma.

In the plasma, D. must be found from MHD
equations. It is known that, in cylindrical geometry, they
are reduced to the equation [13] (see also ref. [12] and
references therein)

v2-[- ir\ a)- mi'(rl-
'r' v-'tpv,- Fl=-vittt+ p,""# ttt. (8)

where rf = yr(r)exp(im? - in( + yt), the perrurbed mag-
netic field is given by E = Y ry x 2,2 is the unit vector
along the z-axis of the cylindrical coordinate system r,
e, z= R(, p = (B/r)[m - nq(r)], B;(r) is the equilibrium
poloidal freld, q is the safety factor, p is the plasma den-
sity, j is the z-component of the current density, Vr = V

- 2t2:v).
This is the simplest equation for the magnetic

perturbation in the plasma. But even the utmost
simplification does not help to obtain a general
expression for b,: analytical solutions of eq. (8) are
known for uniform or parabolic [14] current profiles
only. Therefore, instead of eq. (7), another way of
prescribing ,l-o is needed in a general case.

Equation (8) implies that parameters Q are
determined by the current density. If its profile is given,

Q can be prescribed as some constants characterizing
this particular profile. These constants can be evaluated

from experimental data or numerical results. We need to
know what happens with 1o when the feedback is
switched on. It seems natural to assume that the
feedback field does not change the current density. If so,

the solution of eq. (8) and the shape of b,(r) in the
plasma would remain unaffected by the feedback, and

|1 can be considered as fixed constants independent of
the feedback field.

This conclusion is justified by results of toroidal
calculations [2,3] showing that the feedback does not
strongly modify the perturbation in the plasma. This was

confirmed in DIII-D experiments and related numerical
analysis, and the observed invariance of the mode
structure during the feedback process was called mode
rigidity [6].

The system eq. (5) with constant 1-o is a starting

+=-1r+ r)- 0)

(i - f) Bo= 2rcBi*'

with Q defined as

fo: - Q b'o / b o)1, *_o- 
(r + 1) .

In the vacuum gap inside the shell, r < r*,

(1)

(s)

(6)
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point for analysis. It must be supplemented by an

algorithm prescribing the feedback-produced magnetic

field as a function of some input signal combined of the

magnetic signals measured outside the plasma.

3. One Resistive Oall, ldeal Feedback
If only one resistive wall is present, the external

field in eq. (5) is the field produced by the feedback

system, Bt*'= Bf,. For a single unstable mode k = m ag.

(5) gives

V = f^+2pBt^ | B^, (9)

where p = lml, l^ > 0 is the no-feedback growth rate,

and B^ is the amplitude of the mode.

RWM is suppressed when / < 0. Assuming a

simple proportional control

Bt^=- Kx I , (10)

we compare the feedback stabilization with input signals

l from the radial probes in the mid-plane (1.), and from

poloidal probes measuring -bs(r,0) inside and outside

the vessel (ft' and 1f").
An ideal feedback system would create only

necessary (m,n) harmonic. In this case

I,=B^'
I'; = (l + f^l1t) B^,

I3'= I't -i n.tp .

The values 1$' and lfut are expressed through B. using

eqs. (l)-(3) and divB = 0.

It follows from eq. (9) that any choice from eq.

(11) would allow RWM suppression with algorithm eq.

(10). For example, for I = I, the stability criterion is

K>Ko=f^l(2lt). (r2)

The largest ofthe three signals in eq. (11) is ljn. Larger

signal can be detected easier, and feedback stabilization

can start earlier. This is an advantage of the feedback

with poloidal sensors inside the vessel. But it hardly can

explain the observed essential superiority [2,3,5,6] of
this system over that with radial sensors, since I differs

from Ij" by a constant multiplier only. This difference

results in larger gain K for a system with radial sensors,

in other respects both feedback systems are equivalent.

This is true for the ideal case. But relations eq. (l 1)

may not be valid for a real feedback.

4. One Wall, Gonventional Feedback, Radial
Sensors

In the ideal case, the feedback system must produce

the same helical harmonic as the plasma-generated

perturbation, and nothing more. This would require

stellarator-like helical windings. In practice, the

correction coils consisting of frame-like rectangular

segments [1-9] are always considered for tokamaks.

Such coils, called below conventional, allow the desired

RWM suppression in theory and in DIII-D experiments,

but they are not optimal: RWM has a helical structure

while the rectangular active coils are aligned toroidally.

Non-optimal active coils generate side-band harmonics,

different from the intrinsically unstable principle

harmonic. This harmonics can contribute to the

measured input signals 1, affecting the dispersion

relation eq. (9) through eq. (10) or another feedback

algorithm.

The magnetic field br = Y Vt x f produced by a

conventional feedback system with correction coils

similar to those used in DIII-D has a property Vr(e) =

-rftee). Accordingly,

br,1e; = bt,ee) ,

brr1el = btr(-o) .

(13)

(14)

It is known that even in the case of DIII-D (six active

coils each covering a 60-degree toroidal arc) the feed-

back field can be modeled by a single harmonic in toroi-

dal angle EMBED [1]. Thus, the toroidal discreteness

can be disregarded in the analysis.

A real feedback system in addition to necessary

(m,n) harmonic generates a number of side-band

harmonics. Conventional feedback has a property eq.

( l3), so that bt, spectrum is symmetric. bt* = bt-*.

Therefore, even if a system is somehow optimized for
stabilizing (m,n) mode, at least (-m,n) side-band

harmonic in b| must be taken into account. With two

harmonics of the field from active coils, eq. (9) must be

considered together with

V=f ^+2pB:.lB_-. (1s)

Instability of a single mode means that without feedback

/i->0, but 11.<0.
If the feedback field is described by two harmonics,

(m,n) and (-m,n), and Br-^= Bf^,

(1 l)

where

i-t'
I-=B-.*B--=28-+ I"
'r -m'--m --^ V_ l_^'

V ",=0'51f-- 
+ f^) '

(16)

(r7)
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equation for i:

1,2 +2iQltK - V")f^ l* -41tK ir.,=0. (18)

For stability, both roots of (18) must be negative. This
requires 1",<(l and

K t fo(t -0.5f^1V,,).

feedback, while for the walls inside, B"*t also includes a
field produced by all walls screening a given wall from
the active coils. The radial magnetic field is a

continuous function described by eq. (3) between the
walls.

For a plasma column surrounded by two resistive
walls of radii 11 and 12 the dispersion relation is [12]

(1e)

The necessary gain becomes infinitely large when i'".
-+ 0 because the measured input signal 1, vanishes at i=
i'",. When i,", becomes positive, the unstable (m,n) mode
cannot be stabilized by the conventional feedback de-
scribed by (10) with 1= 1".

5. One Wall, Conventional Feedback,
Internal Poloidal Sensors
If the feedback field is described by two harmonics

with Bt-= 3f^,

V'-V(f*-wLr')
-21tLf (w - l)(Ko + BllB)= Q . (23)

(20)

With this input signal and proportional control (10), eq.

(9) tums into

(v - r^)(/ - r:) = - 2K (v + tt)(f^ - r:^). QI)
The growth tate i becomes negative when K >
max{K1,K2}, where

I t'\r Fr:-R lr*/ l'-r-'---'d -n\-'ltl 7-f_*'

K,=r-etry K2=+\'

Here B> = b^(r) is the perturbation amplitude at the first
wall, 81 is the part of 82 created by the feedback system,
Ks is defined by eq. (12),

w =l + xltrltr, a,f =2Hl(x'N -D, Q4)

and x2: r2lrr. One-wall case eq. (9) corresponds to the
limit w -+ - in (23).

It follows from eq. (23) that, with radial sensors

and proportional control eq. (10), the condition of the

RWM suppression is again eq. (12), but now it is valid
for modes only with

f^-wLl< O. (2s)

(22)

Ks is given by eq. (12) and i", by eq. (17).

This scheme is much better than the feedback with
radial sensors since it allows suppression of RWM
without restrictions on plasma parameters, and smaller
gain is required.

6. Two Walls, ldeal Feedback, Radial
Sensors

Predictions are quite encouraging for tokamaks

with a single resistive wall. However, the ITER is
designed with two separate resistive walls (p. 2593

[5]). So, it is natural to analyze the difference between

the one-wall and double-wall cases.

The second wall increases the total resistive decay

time decreasing thereby the RWM growth rate. Also, the

second wall acts as a screen affecting penetration of the

field from the active coils to the first wall. This can

weaken the stabilizing influence of the feedback system.

If there are several resistive walls, eqs. (5) and (6)

must be applied successively to each wall. For the
outermost wall, B"^t is the field produced by the

In the opposite case, f^ - wA,f > 0, suppression of
RWM is impossible. If this is true for the ideal feed-
back, it must be even more true for the conventional
feedback with radial sensors.

7. Summary
The analysis gives a natural explanation of the

observation that, for the RWM feedback control,
'sensors measuring the poloidal field perturbations are

superior to radial sensors' [3].
The poloidal component of the perturbation inside

the vessel is always larger than the radial one, see eq.

(ll). Therefore, internal poloidal sensors are better for
the RWM feedback control since a measured (input)
signal must be above some detection level. From this
viewpoint, the best input signal would be a combination
I[" + 1,.

An ideal feedback system could be effective in
suppressing RWM with either 1, or 1j,', just different
gains K would be needed. But realistic feedback system
generates side-band harmonics that influence the
measurements. As a result, the conventional feedback
system with radial sensors cannot suppress RWM when

V", > O. This value eq. (17) is determined by plasma
parameters and can vary during the discharge evolution.
It can lead to increase in the necessary gain eq. (19)
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above the permissible level. That may be a reason of the

loss of the control observed in DIII-D experiments with

radial sensors [1]. The weak point of such a feedback is

aggravated, even for the ideal feedback, when a second

resistive wall is present.

However, with internal poloidal probes the

conventional feedback allows suppression of RWM

without fail and at rather modest gains, see eq. (22)' The

difference between two cases, related to properties eqs.

(13) and (14), may be a reason of the dramatic

improvements in active control in DIII-D experiments in

2001 [5].
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