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Abstract
Starting from two-fluid equations, we derive a set ofequations which describes the. current diffusive

ballooning mode (CDBM) and the ion temperature gradient (ITG) mode. We numerically solve the

equations toobtain real frequency, growth-rate and spatial structure ofthe eigen mode. The magnitude of
transport coefficients in a saturated state are evaluated from the marginal stability condition. We report
model dependence of ITG and a contribution of compressibility on CDBM.
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1. Introduction
It is important to understand the mechanism of the

turbulent transport driven by micro-instabilities to
improve confinement of tokamak plasma. Among
various turbulent transport modes, we consider a model
driven by two kinds of micro-instabilities to explain the

particle and the energy transport across the magnetic
field. One is the self-sustained turbulence model [] of
current diffusive ballooning mode (CDBM) [2], which
has successfully described the L mode transport and

improved confinement associated with the formation of
the internal transport barriers [3]. The other one is the

ion and electron temperature gradient modes (ITG and

ETG) on which fluid [4] and kinetic [5] analyses are in
progress.

We analyzed the kinetic effect on CDBM discussed

in the previous conference [6], but the role offinite drift
frequency was not clearly presented. In this paper, we
start from full two-fluid equations to analyze both the

electromagnetic drift mode, CDBM, and the electrostatic

drift mode, ITG, including the turbulence coefficients
based on the self-sustained turbulent theory [1] and

evaluate the transport coefficients from a saturated
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fluctuation amplitude. Additionally, we concentrate on

the influence of the diamagnetic drift on the CDBM and

ignore the kinetic effect due to the finite Larmor radius
(ftrPi << l).

2. Basic Equations
2.1 Full two-fluid equations

We start from collisionless two-fluid equations, i.e.

the equations of continuity, motion and state, and

Poisson's and Ampere's eqs. (4), (7)-(10).
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where D - BlBn, the unit vector of magnetic field, E =
-YQ- dAldt, the electric field, @, the electrostatic po-

tential, A, the vector potential, j1 = Z/4fl{)ivu +

Qinuvs), the fluctuation current, Y t = -b x (D x V).
The subscript I denotes a perpendicular component of
quantities (aL= b x (a x r)), the suffix 0 the unper-
turbed quantities, the suffix I the fluctuation and the

suffix j the species of fluids ("t = i, e).

2.2 Reduced set of equations
The main pulpose of starting from the full set of

fluid equation is to examine the effects of the various
approximations, especially quasi-neutrality and
incompressibility. Since handiness and accuracy of
description are trade-off, we reduce the two-fluid
equations in the following. Subtracting the continuity
equation of electron from the continuity equation of ion

and substituting Poisson's equation for density
fluctuations and equation of perpendicular motion, we
obtain the vorticity equation,
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where Q = 4lBslmi is the cyclotron frequency and ris
the magnetic curvature. If we assume incompressibility
(dpryldt = iq1ns1(l + n)o.j|, where io)*; = (Tojl

eflsiBs)(Yrnst)Vo, the density drift frequency and 4; -
d(ln Zs;)/d(ln n6), the temperature scalelength) and

quasi-neutrality and ignore the electron inertia term (lQ1l

<< lO"l), the fanriliar vorticity eqs. (6), (11)-(13) can be

obtained. Note that the right hand side of eq. (7) van-
ishes if the magnetic curyature is absent (i.e. a sheared

slab plasma). Remaining equations are the equation of
parallel motion, the equation of state and Ampere's
equation:

(10)

where n6 = noi = t?'e is assumed and ve,1 and Es are ig-
nored, for simplicity. Now we consider the drift wave
approximation, where all fluctuations are expressed as

an eikonal type,/r(r) =l'(x)exp(i(ftry + knz)), and unper-

turbed quantities are constant in the direction to y or 0
and z. Using the first order of the equation of motion,
vojt= -Ypoj x bl(qtnstBs), we can reduce the advection
term in eq.(4), rs;1 .Ypri + vrjL'Ypoi, to iq,nqal(l +

4)Qby ignoring the time derivative.

2.3 Turbulent transport coefficients
Based on the self-sustained turbulence theory [],

we can evaluate the turbulent transport coefficients due

toExBdrift,

L (v,sxYx,,l --r,v1x,,.tt^ t! J 'rr L tJ

Non-liner transport rate yN(i.e. life time of fluctuation)
is defined by yr = -irro + Ttk2lwhere 41 is the mode fre-
quency. Substituting the above equation to the transport
coefficients, )Ci = k1(f)l1NBil, in the case of finite real
frequency, the transport coefficients are evaluated as a

function of the fluctuation amptitude (t')

ft (11)

In the following, we neglect the kinetic effect due to the

finite Larmor radius for simplicity and assume I," = Li
= Frn,L= k.

2.4 Ballooning expression
Using the ballooning transformation [14], we

obtain from eqs. (7)-(9),
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where m is the poloidal mode number, pr,= pti* prc, Be

the poloidal magnetic field, B, the toroidal magnetic

field, r the minor radius, Rs the major radius and { the

ballooning coordinate. Taking account of the Shafranov

shift of the magnetic surface, Yl --> -m272t1, we take f2
=1 + (s6 - asin()2 and H(() = K * cos6 + (s6 -
asinf)sin(, where s = (rlq)dqldr the magnetic shear, a
= -qzRdBldr the normalized pressure gradient and K=

-(rlR) (l - q-21 the average magnetic curvature.

With the marginal stability condition, lm(a) = y-
0, we numerically solve the ballooning mode eqs. (10),

(12)-(14) to find the lowest eigen mode and evaluate the

average amplitude of fluctuation (t'). Then we seek the

maximum;" which isneeded to stabilize the fluctuation
for all m.

3. Numerical Results
3.1 ITG mode in a sheared slab plasma

Figure I shows ft1pi dependence of the eigen

frequency for several models of the slab ITG mode. A
solid line illustrates the result of the one-fluid model

derived by Lee and Diamond t41 (3 equations). A
dashed line indicates the result of the electromagnetic

full two-fluid model described by eqs. (2)-(6) (14

equations). A doted line shows those of reduced model

obtained from eqs. (7)-(10) without curvature (6

equations). These modes have a phase velocity directed

to the ion drift motion and the real frequency decreases

with the increase of kpi. The growth rate in the one-

fluid model once increases and then decreases with the

increase of k1pi, while that of the two-fluid models are

monotonically decreasing function.

From this figure, we find that the differences of
growth rate among several models are sufficiently small

for qualitative analysis and the electromagnetic models

can describe the ITG mode in a sheard slab plasma. In

the 6 eqs. model, even if we neglect the electron inertia

termand assume the quasi-neutrality in eq. (7), the result

changes little. The difference between the reduced 6

equations model and the full 14 equations model is quite

small. Therefore, we may adopt the reduced two-fluid
model to consider the coupling between the drift
instabilities and the balloonine mode.

3.2 CDBM with compressiblity
Next we consider the CDBM in the toroidal

geometry including the effect of diamagnetic drift using

eqs. (10), (13)-(15). Figure 2 shows the s - a
dependence of the turbulent transport coefficient divided

by the dt2 for the several magnetic shear parameters in
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Fig.1 krp, dependence of the mode frequency of the
lowest order calculated by several models, where
Doi= flo" = 2 x 10rs m't, 7i' = 12.8 keV, 70" = 3.9 keV,
Bo=4.7 T, l,=6.36 m,\i= 5, tt.=O and Ls=2.75
m.

s=0.1, ti=5/3+
s=0.3, Yi=5/3'+
s=0.5, Ti=5/3#
s=0.1, t=0 ""O"'
s=0.3, 1i=0 "".}"'
s=0.5, 1,i=0 "---]"".
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Fig. 2 s - o dependence of 6ld2 to various values of the
magnetic shear parameter (s = -O.5 - -0.1), where
Bo= 1 T, Do= 1 x 10rs m-s, e =8, Ro= 3 m, I = 1

keV, I. = 1 keV' Ln = 3 m and r= 0.17 m.
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the case without compressibility (yi = 0), doted lines,

and with compressibility (yi = 5/3), solidline.
Incompressible result corresponds to the previous

analysis [3,6] and are expressed by the relation, I = F(s,

Odt2 Pl. With compressibility, the turbulent transport

coefficients are about one order higher than those

without compressibility. The net value of 7" reaches 5 -
10[m2ls] and is close to the experimental results. The

increase of 7" comes from that the role of the electron

thermal diffusivity changes from suppression of the

fluctuation to excitation. In the case of incompressibility

(T = 0), parallel fluctuation current is determined by the

extended Ohm's law and the ballooning mode are

excited by the current diffusivity associated with the

electron viscosity. When we include the compressible

term 1V11v1;, the parallel fluctuation current are modified

by the equation of state and the contribution of the

electron thermal diffusivity reduces the stabilizing term

and excites the fluctuation.

4. Summary and Discussion
To describe both the electromagnetic (CDBM) and

the electrostatic (ITG) drift waves, we obtain a reduced

set of equation starting from the two-fluid equations. We

confirm that the full and reduced two-fluid models

correctly describe the ITG mode in asheared slab

plasma. Taking account of the tokamak configuration
and magnetic curvature, we derive the current diffusive
ballooning equation with compressibility. From
preliminary numerical results, the compressibility
enhances 1"by an order of magnitude and may have a

very important role for the non-linear interaction.

In this paper, we ignore the kinetic effect due to the

finite Larmorradius. When we consider the reduction of
the electric field felt by the ion, we need to solve the

Poisson's equation. For general analysis, it is necessary

to start from the gyro-kinetic equations including the

turbulence effect. Additionally, the coupling between

toroidal ITG mode and the CDBM is an interesting
problem in progress.
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