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Abstract
Role of boundary condition for the appearance of chaos is examined. Imposition of the boundary

condition is interpreted as the reduction of the system size z. For a demonstration, Rayleigh-Benard
instability is considered and the shell model analysis is applied. It is shown that the reduction of I
reduces the number of positive Lyapunov exponent of the system, hence opens the route from the
turbulence, to the chaos and to the limit cycle/fixed point.
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1. Introduction
There have been reported various routes to turbu_

lent state in plasmas. Period doubling process due to
Hopf bifurcation is a typical route which associates a
chaos. Experimentally, a plasma of unstable sysrem
often reaches the turbulent state without going through
the chaotic state. It has been found that the ion_ion
instability in double plasma in the presence of ion beam
component directly enters into the turbulent state [l]. On
the contrary, when the bias grid is imposed at finite
distance from the central mesh, the discrete spectrum of
unstable wave with an intermittent behavior was found.
This implies that a certain constraint upon the system
(e.g., boundary condition) reduces the number of
degrees of freedom. Hence the phase diagram, on which
the route to turbulence is determined, may also be
affected by the constraint.

In this paper, a working hypothesis is presented;
the boundary condition is imposed by the bias grid,
which makes the constraint for the number of unstable
modes in between the central mesh and the imposed
grid. If there are many unstable and independent modes,
and many positive Lyapunov numbers exist, the system
develops to the fully turbulent state. However. if the
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number of existing modes reduces and the positive
Lyapunov number becomes small (say, unity), the
system shows the chaotic behavior. And, the maximum
Lyapunov exponent becomes zero, only a limit cycle
solution exists. Imposition of the grid determines the
number of unstable modes, from the fundamental to
higher harmonics, for given plasma parameters. The
gradual reduction of the distance between the grid and
the central mesh cuts off the higher harmonics, so as to
reduce the number of independent unstable modes. This
mechanism has an analogy to the inverse process of
period doubling (where the time period is replaced by
the space wavelength).

For example, in the ion-beam system, the modes
with c1 < k)to < c2 can become unstable, where ft is the
wave number, l,o is the Debye length, and numerical
constants satisfy cr - 0, being controlled by the ion_
neutral collisions, and c2 is determined by the ion_
Landau-damping, e.g., c2- | for the relevant parameters
in [2]. Similar argument is applied to the Rayleigh_
Benard instability, which corresponds to the flute mode
in plasmas. Here, the Rayleigh-Benard instability is
considered, since the mode becomes unstable in a finite
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region of k-space, can develop into turbulence, and is

sensitive to the constraint on the period of the system (in

the perpendicular direction to the magnetic field)'

In order to analyze the hypothesis of the basic

mechanisms theoretically, we examine the route from

the turbulence to the chaos and to the limit cycle/fixed

point. We adopt a shell model analysis, by which we

can extract all the turbulence, chaos and limit cycle/

fixed point behavior t3l. The reduction of the system

size is imposed, and the role of boundary condition on

the appearance of chaos is shown below.

2. Model Equation
A simplified model, which describes Rayleigh-

Benard turbulence in the fluid layer of height ft under

the gravity g is adopted. The temperature field is ? =

Ze(x3) + 0, To@) = To - lxz and the density is p6 = p6(l

+ op;3), where 0 is the fluctuating temperature, .r3 is the

vertical distance from the bottom' cr is the thermal ex-

pansion coefficient and p6 is the density at the bottom'

The differential buoyancy is given by p6ag0.

Navier-Stokes equation for incompressible fluid

and heat equation are written as

V.y= 0, (1)
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(3)

where * represents the complex conjugate, n = 1,"", N

is the number of each shell, k, = cT"-t ' c is a numerical

constant, a, is the fluctuating velocity, pn is the fluctu-

ating temperature, Ru is the Rayleigh number' R" =

hago;$l:r.t, and P. = v/r is the Prandtl number' To derive

these equations, k = k3 is assumed, and the normaliza-

tions are used: ftft --> k, krh-2 -+ t, v3h/r -+ u and

lugh3lvr -+ p. The boundary conditions are given as

It-t = lto = l/N+l = uN+z = 0 ald p-1 = Po= PN+t = PN+2 =

0, which ensure no interaction between N-shell and the

vacuum outside of N-shells. If we neglect the third term

in RHS of (4) and (5), and add the force terms to them,

respectively, then eq.(4) corresponds to the GOY model

[5,6] and eq.(5) corresponds to passive scalar field

which involves with GOY model [7].

The linear stability analysis shows that the system

is unstable if R^> kX. The growth rate increases with the

increase of Ru and P,. The reduction of Ru value

corresponds to the reduction of the system size D' This

reduces the number of unstable modes in the shell

model. The analysis on this shell model of Eqs'(4) and

(5) has been done and the turbulent , the chaotic and the

limit cycle nature has been reported in refs' [3'4]'

3. Analysis and Results
Here the nonlinear calculation is done for C = 1'0,

N = 13 (or N = 14) and a simple phase diagram is

plotted on Ru - P, plane (Fig.l). Heuristically, the higher

Ru number region above the line shows the turbulence'

and the limit cycle behavior with no positive Lyapunov

exponent is found below the line. An imposition of
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Fig. 1 Phase-diagram on r9" - P, plane' The higher F"

number region above the line shows the
turbulence and the limit cycle behavior with no

positive Lyapunov exponent is found below the

line.

$.0'Vir,=-fr+VV2v,+og96,, Q)

P * (, 'V; A= rV2 0+ Pv,6o
ot

where v is the kinematic viscosity, r is the heat diffu-

sivity,6u is the Kronecker's delta and I = 3 represents

the direction of buoYancY'

Applying the Fourier transformation, we rewrite

eqs.(l)-(3) into the shell-model equations (see [3'4] for

derivation). The nearest and the second nearest neighbor

complex component model is given as

ff=i(o,u;.,u;,r-k,-ru)-rui,rt^-rr)-rui-') 
g

- P,klu^+ \p, (4)

p =, 
\0.-,(,:-, 

t., - d., i^-,)

- o,- r(ui-, f^-, * "i-, f,- r)

+ k,(ui,, f,., - u:,, i,. r)\

- R^un- k?, p, (s)
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Fig. 2 (a) The temporal evolution of the total energy inthe case with P. = 2.0 and R" = 2.0 x f O^. 
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power spectrum in the case with p. = 2.0and r9" = 2.0 x IOa.

boundary condition can be simulated by the reduction of
the value Ru. Cases with p, = 2 for & = 2 x lff and & _lOa are shown in Figs. 2 and 3, respectively. The
temporal evolution of the total energy defined bv

Fig. 3 (b) 
.The 

power spectrum in the case with p. = 2.0and F" = 1,0 x lg'a.

104. The maximum Lyapunov exponent is positive in the
region of 0.5 < p. < 7.5 and suddenly drops down to
zero at P. = 8, which corresponds to the phase boundary
in the diagram (Fig.l).

For P, - 2 and p, = 5, the power spectra are fitted
as E(fl * J:-3'ts and E(fl - f-r.t, respectively, in the
range of 1000 </< 2500. On the other hand, the period
doubling cascade sach as f | | 6, f / lg, f / 4 f /2...., where /is the initial frequency, is observed in the case of p. = g
[8]. This corresponds the fact that the fluctuation
amplitude is very small and converges to the limit cycle.

The intermittency is analyzed, obtaining the scaling
exponent ofhigher order spectrum function. For the case
in Fig.a@), the intermittency, which is observed by the
deviation from the K4l prediction [9], is found fbr the
case of P, = 2 and, P, = 5. However, for p. > g, the
intermittency disappears and the chaotic attractor does
not exist.

E(t)=+1(l u.l' *l n,l')

and the power spectrum are plotted. Two frequency
spectra clearly show the difference between the
turbulence and the limit cycle. The appearance of the
limit cycle demonstrates the reduction of the number of
degrees of freedom with positive Lyapunov exponent.

_ The reduction of system size & is also considered if
R" is kept constant and p. number is increased. Such a
case is shown in Fig.4. The maximum Lyapunov
exponent vs P, number (a) and the power spectra (b) for
different values of p, = 2.5 and 9 are plottej for .l?, = 2 x
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exponent. Well above the line' the turbulent state rs

,"uti"ed. Close to the phase boundary in upper region'

the chaotic behavior would be seen' which might be

related with Ruelle-Takens scenario [10]' Further study

of the behavior of solution and the number of positive

Lyapunov exponent across the boundary may clarify the

discrimination between the chaos and the turbulence'

The role of system size on ion-ion instability can be

considered in a similar way' In the cold plasma ap-

proximation, the parameter, (1 + (opb/op)2t3)3azniv*I] -
fiIJ, may play the similar role to Ru-number' Reduction

oi the size I may open the route from the turbulence to

the chaos and to the limit cycle/fixed point' These

detailed analyses are left for our future work'
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Fio.4 (a) The log-log plot of the maximum Lyapunov
' '"'- ;;o;;;niJ"t"-ut Prandtl number in the case of F"
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