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Abstract
The model of a tranSformation of ion-acoustic double layer with small amplitude into strong double

layer is presented in [1]. In this paper this model and all stages of evolution are described analytically.
Earlier by numerical simulation in [2] and analytically in [3] it has been shown that an ion-acoustic

instability development leads to a formation of a nonmonotoneous ion-acoustic double layer with small

amplitude if an electron drift velocity is a little smaller than an electron thermal velocity. But this double

layer accelerates ions. Hence on first front of ion-acoustic double layer an ion density becomes smaller.

But into this region the electron flow penetrate with electron velocity only a little smaller than electron

thermal velocity. Hence on the first front of the potential hollow the electron drift velocity becomes more

than electron thermal velocity due to flow continuity law []. Due to Bunemann mechanism interaction

of electron flow with this region an electric potential hump of large amplitude is excited with growth

rate, proportionalto a*(m.lm)rt3.Here a!" is the electron plasma frequency; tn", midta electron and ion

masses. This strong electric potential hump can be unstable relative to radiation of electron reversal jump.

After that former hump becomes strong double layer.
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1. Excitation of lon-Acoustic Solitary
Perturbation of Finite Amplitude in
Current-Carrying Plasmas
In present paper a plasma with electron current

relative to nonpropagating positive and negative ions is

considered with electron current velocity a little smaller

than electron thermal velocity, V6 < %r,". This plasma is

nonequilibrium. Ion-acoustic perturbations are excited.

It is shown in [4] that homogeneous ion-acoustic
turbulence in one-dimensional nonequilibrium current-

carrying plasma is saturated on low level. Futher this

ion-acoustic turbulence is unstable relative to the

modulation. This modulation instability results in tur-
bulence splitting into widely spaced short perturbations.

The width of the latter is of order of the wavelength. On

nonlinear stage of evolution these short perturbations

become the solitary types. Therefore properties of
electrostatic potential hollow of solitary kind are

investigated in this paper (see Fig. la). The hollow
reflects electrons with energy smaller than the hollow

depth. This leads to hollow depth (amplitude of electric
potential, gto) growth.

The equation describing shape and time evolution

@2001 by The Japan Society of Plasma

Science and Nuclear Fusion Research

564



Lapshin Y ' et al" Analytical Description of r. Sato's Mechanism of rransformation of Ion-Acoustic Double Layer

of the electric field structure of the hollow is derived in
this paper. It is obtained that the ion_acoustic hollow of
electrostatic potential is excited due to current_carrying
instability. The case of large amplitude of excited
perturbation is considered, when there are no traditional
small parameters, permitting to describe properties and
excitation of perturbation. It is shown that the hollow
propagates with velocity which is close to ion_acoustic
velocity of positive ions (T"lmi)t/2. Here Z" is the
temperature of plasma electrons; rus, is the mass of
positive ion.

We use hydrodynamic equations for densities n11
and velocities V;* of positive and negative ions, Vlasov
equation for electron distribution functionf, and poisson
equation for the electrostatic potential g.

Electrons propagate relative to ions with some
current velocity V6. Due to reflection of resonant
electrons, with nonsymmetric relative to hollow velocity
V6 distribution function, from potential hollow the
quasineutrality brakes near the hollow: before the
hollow the electron density decreases and after the hol-
low the electron density increases. The quasineutrality is
realized due to formation of electrostatic potential jump
A,E near the hollow (see Fig. la).

At increasing of hollow amplitude up to critical
value, when inverse time of resonant electron (with
velocities lV - Vol 3 Vr,(rps)((2eEo/m")u2) interaction
with the hollow becomes larger than growth rate y(r6) =
dlnqldt of hollow amplitude Vr,(ei > y(q,j,6z(cpi a
slow evolution of the hollow starts in comparison with
electron dynamics. Here & is the width of the hollow, e
is the electron charge. The resonant electron distribution
function changes. The front with this changed
distribution function propagates from the hollow with
relative velocity equal Vo.

We use the approximation of a hollow slow
evolution for its description, using small parameter n:
T@i6z(qilVr,(qi. In zero approximation on this
parameter, taking into account that the resonant
electrons are reflected from the hollow, one can derive
from Vlasov equation the expression for electron
distribution function on velocity, V,

f. = fw[-(V2 - 2e (E + A,E)lm")u2 t Vil ,

y'.A(E)sign(z),

A(E) = I2e(W + g)lm"ltn. (l)
Here/s" is the initial unperturbed distribution function of
electrons; z = 0 corresponds to g = -g10.

We use the normalized values: Q= etp/T", N_= no_l

rto*, N" = ns"/n6*, Qt = exle, Vs = (TJml*)tt2. We
normalize z on Debye radius of electrons 16", V6 ori
electron thermal velocity Vx,", time t on plasma
frequency of positive ions cro*-I, velocity of solitary
perturbation V" on ion-acoustic velocity (7"/mi*)u2 of
positive ions. ne_, nsa nta unperturbed densities of
negative and positive ions; 4*, nti+ €lta the charges and
masses of positive and negative ions.

Integrating the expression (1) on velocity, one can
derive the electron density in first approximation on V6

n" = ns"exp(Q)ll - (2LQ/G)13 ax exp(-xz)

- 2Vo(2h)1/2l| a.e - Q)tt2exp(-f)

F=[e(q,+ q)/7"]1t2. e)
Far from the hollow the plasma is quasineutral. It

means in approximation nu = 0 that far from the hollow
we have I/"(z)1.-- = N"(z)|.-* = l. From here one can

Fig. 1 Transformation of ion-acoustic double layer into
strong Bunemann,s one in current_carrying
plasma: a) small-amplitude ion_acoustic solitary
perturbation; b) small_amplitude ion_acoustic
solitary perturbation with nonhomogeneous tails;
c) electron double layer separation from strong
hump; d) strong double layer.
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derive, using (2), the expression for potential jump near

the hollow

LQ = Vo(2ln) 1/2(1 - exP(-@6))/

I - Q:G)!P dx exP(-*)l (3)

From hydrodynamic equations for ions one can

obtain for perturbations of densities of positive and

negative ions

fl.i+ = ll11ly * flXr ,

/4NL = notlll - (!q)2Elma,V"'f''' '

O nl/ 0 z = + 2 (Oq I Ot ) (nslq 1l m EV 
"3 

\

1t - (+q)Elmitvc2llll - (+qt)2ElmoV"'13'' (4)

Substituting (2), (4) in Poisson equation one can

derive nonlinear evolution equation

03 Q | 0 z3 + {Q*2v2 "*(r - 
2Q Q*v2 "*lv "27-ztz

(L - OQ*V2"*1V.2)

+ QIN-V2"-(l + 2QQ-V2*lv"zr-t''

0 + 0 Q -v 
2,-/v,2 

) | @ Q I a t )21V,3

+ ((o Q / d z) | v 
"' 

) { Q *' v' 
"*(L - 2 Q Q *V 

2 

"* 
I V 

"', 
)t''

+ QIN-V2"-(1 + 2QQ-v2"-lv.')-t''l

- {exP(@) - sign(z)Vs(2ln)tt2

t(fu(00 + @))1/2exP(-@s)

- Iffi avO - 2Y2)exP(-Yz11ri2 + Q)1t2

+ (1 - exp(-00)tl - Q.G)JY dx exp(*))a

texp(-0o)/(00 + Q)tt2 +2(Qo+ 4)exp(-00)

+ +JPo dy v0'+ Q)tt2exP(-Y\lt6tl
N"dQl}z = 0 (s)

From nonlinear equation (5), using condition (d@/

dz)lo=-oo= 0, one can show that the hollow propagates

with thJ slow velocity V" = (T"lmp)tt2(n*ln")tt2(q*le)'

From (5) one can get also the growth rate 7nl of the

hollow small amplitude. For that we select in (5) 0 = -fr
in approximation of small amplitude.

d Qot dt = (LQ tz\[ Q,irimo +-06 l a Q t a rl KQo + Q)1 
t2 (6)

For determination of the expression limE--qrldQl

&V@o + Q)tt2 we use the equation (5) in quasistationary

approximation

@ Q I a a2 D = (v 
"tv,-)zf 

N -((l + Q-zQv 
2 

"-lv "2)tt2 
- l)

+ (r - Q.2QV2*1v"211t2 - 11

+ N" {exp(@) - | - 2sign(z)Vs(21 n)1t2

te*p(-00){00(Qo+ Q)3t2 - Qo3t\213

+ exP(-@6)(l + Qo + Qo22B\

- exp(@)(1 - Q + f2l3) + (1 - exp(-@s))

I - Q.G)!Y dx exlel)l-l

texp(-00)((00 + Q)3t2- Qo3t\213

+ fiexP(-@6)0 + Qo2l3)

-.Qexn(0) 0 - Q2t3)

-!E ay.*pey\ltGll Q)

Substituting (7) in approximation of small

amplitude into (6) one can derive

Tnr = g*(V o I V n)3 
t 2 (q * | e)(n * | n 

")t 
12

{ 1 + t1/3 - (n"ln*)(elq*)f

(etpslr")(nl2)tt2(v,h"l2vi) (8)

One can see that the hollow of large amplitude is

formed at electron current velocity Vs larger than

threshold one. The threshold decreases atdecreasingn"l

rx11 orld equal zero at n"lni* < q*l3e' The maximum

threshold is realized at ni-= Q.

So, we have shown that due to one-dimensional

ion-acoustic instability development the electric

potential hollow with the potential jump near the hollow

is excited.

2. Description of Solitary Perturbation
Excitation by Bunemann Instability
DeveloPment
Now we describe the further evolution of the

excited ion-acoustic hollow with jump' The potential

jump on the first front of the ion-acoustic hollow is

nonmonotonous due to excitation of hollow in time (see

Fig. 1b). The potential jump is maximum one near

hollow and it decreases slowly up to zero far from the

hollow. So, the shape of the electric potential on the first

front of the hollow is a wide hump' This hump

accelerates ions from its region' Hence on the first front

of the ion-acoustic double layer an ion density becomes

smaller. For the neutral condition support the electrons'

penetrating in this region, should be accelerated' If into

this region the electron flow penetrate with electron
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velocity only a little smaller than electron thermal
velocity, hence on the first front of the hollow the
accelerated electron drift velocity becomes more than
electron thermal velocity due to flow continuity law [l].
Therefore, on the first front of the hollow the condition
for Bunemann instability is realized. Due to Bunemann
mechanism interaction of electron flow with this region
an electric potential hump is excited. Let us describe a
solitary perturbation in type of electric potential hump.
We will show that it represents a nonlinear perturbation
on a slow electron-sound mode. Such nonlinear
perturbation has been observed in laboratory
experiments and in numerical simulation [5]. As it is
slow, resonant electrons can be trapped by such
perturbation. Thus, it is possible to expect that kinetics
of resonant electrons is of a large role in determination
of this perturbation properties. Hump of electric
potential provides hollow of electron density in a
neighbourhood of maximum potential.

From Vlasov equation the expression for per_
turbation of electron distribution function follows.
Integrating the latter expression on velocities in case of
small amplitudes of the solitary perturbation g0 one can
derive the expression for perturbation of electron densitv
similarly to [6]

$n' = (dg/dt)ty + (t - 2yr)(t _ R(yD/yl + fR(y)
+ Adlr - y2 + (3/2 _ /r)(R(y) _ 1)l

R(y) = t + OtG)li dx exp(-p)/(t _ y) ,

y = Vs/Vr6"',1, (e)

Here prime means a spatial derivation; Vs, e are
velocity and electric potential of soliton; Q = erp/T"; Vr6.
is the electron thermal velocity. Substituting (9) in
Poisson equation, one can derive, in approximation no_ =
0, an equation, describing spatial distribution ofelectric
potential:

(f ), = fno) _ [1 + (2y2 _ 3)R(y)]f t6 (10)

From (10) and Q'16=6s = 0 one can obtain the
expression Vs = 1.32V$. [6).

Let us determine approximately the soliton width
from (10): 6z = cpslq'lr=prz = 16"(4g T"leE )u2. The
soliton width decreases with amplitude growth.

In case of large amplitudes, eeolTe > 1, from
Vlasov equation we have the expression for electron
distribution funcrion..if =.;fu[(u2 - 2etplm")r," +Vo sign(z)]
for faf = lV - Vol > (ZeE/m")tt2. Here /s" is Maxwell
distribution function. Thus we obtain an equation for the

soliton shape

(f )2 = -O + QIG)I,,L atg - y)2exp(-p)

l[r+QlQ-y)rlu2_t| (11)
From (l 1) one can approximately derive

6z = qld I q=_qon= r6"f2erps/7.(,,[, - D]il2 (I2)
From (12) one can conclude that the soliton width, dz,
grows with qo. Therefore, it is necessary to take into
account electrons, trapped by the soliton field.
Assuming distribution of their density as ntr\z) =
n2expfeg(a)lTr,l, we derive similarly to (12't, that width
and velocity of the soliton grow with amplitude growth
(in difference from case of small amplitudes of the
solitary perturbation).

Such properties of the soliton and their
dependencies on amplitude have been observed in
experiments and in numerical simulation [5].

Thus, this solitary perturbation is stationary and
electron one, if ion mobility is neglected. However at
taking into account of ion mobility it is necessary to
expect occurrence of slow growth of the perturbation's
amplitude, as a result of Bunemann instability de_
velopment. In the following order of the theory of
disturbances from (9) one can derive the correction of
the next order to a spatial derivative from electron
density

n"1' = ()E/at)ly + (t - 2yr)(t _ R(y))/yl (13)

This expression, as follows from a spatial derivative
from Poisson equation, should be equal to a spatial
derivative from ion density perturbation ni*,. ni*, is
possible to find in linear approximation from ion
hydrodynamic equations

d2ni*lOf = (m./mi*)il' (14)

Equating the second time derivative from (13) and
first spatial derivative from (14), we obtain

a3Qlaf = (6m"tmi*)f,,

The solution of (15) we search as

(15)

Qk, t) = Qo?)qtz - I- dt16vo(fue,;y1 , (16)

4(z) is quasistationary shape of the perturbation,
assuming, that dQoe)l}t = The).In (16) the change of
soliton velocity, dv6, with change of its amplitude is
taken into account.

Substituting aOlA ttuovgh le _ 6voQ , we obtain
from (15)
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y= 1m.lmi*)tt3Qott2
(r7)

Thus electrons and ions interaction of Bunemann

type has resulted in excitation of the solitary hump of

electrostatic Potential.

3. Potential Jump Separation from the
Hump and HumP Transformation into
Strong Electric Double LaYer

Let us consider, in approximation ns- = 0' the

possibility of the electric potential jump formation and

its separation from the electric potential hump (see Fig'

lc) and transformation due to this separation of the

electric potential hump into strong electric double layer

(see Fig. 1d). We will show that it is possible if the

distribution function of electrons, trapped by the field of

the electric potential hump, has three-hump-type' So, let

us assume that the distribution function of these

electrons have three-hump-type. It includes low-energy

and high-energy electrons' Let us show that densities of

low-energy and high-energy electrons should be closed

for transformation of potential hump into strong double

layer.
We assume that the potential jump separates from

the hump and moves with a velocity Vi' Thus, the

potential jump may be formed from the value 15 to zero

in a small space interval.

We investigate the properties of this jump in lD

approximation.
The jump formation needs a charge separation in

space. For selfconsistent charge separation in space two

groups of electrons are necessary. Let us consider high-

energy electrons with velocity, V6, and thermal velocity,

V.6, satisfying Vt)) Va., Vn'6, and low-energy electrons

with velocity, V,1, and thermal velocity, V,6,, satisfying

%r ( V,r,. << V6, and with densities 116 aod n.' V6"= (Tsl

m.)ttz is a thermal velocity of the plasma electrons' The

velocity of low-energy electrons V,1 can be chosen equal

to %.
The density of the low-energy electrons

exponentially falls off, resulting in positive charge in the

lrurge 9a < q < q) of the jump electric potential, I' while

the densities of both the high-energy and plasma

electrons grow in accordance with the power law' This

leads to negative charge at0 < <p < 9"' Here rpo is the

amplitude of the jump electric potential' At E" the beam

starts to be reflected. As a results, the quasineutrality is

restored outside the jump. Since the nonresonant high-

energy electrons propagate into the plasma, where they

are decelerated, their density grows' Therefore, the

quasineutrality condition in front of the jump requires V;

< %r," (is the thermal velocity of plasma electrons) and

the density of the high-energy electrons passing through

the jump should be small nro 11 n"'n" is the plasma

electron density. Hence 15 approximately equals energy

of high-energY electrons.

Further we use normalized values' Namely' we

normalize particle densities on unperturbed plasma

electron density, nge' electron velocities on electron

thermal velocity, electric potential on T"le, electron

temperatures on plasma electron temperature' fe '

In the electric field of jump the ion impulse grows'

Its flow equals n;*qs. All electrons transfer impulse to

jump. Flows of impulse, transfered to jump by plasma

electrons, by high- and low-energy electrons equal

2Vigott2,2n6gV,o2' n"7", 4Vo2(no - nuo)' Here I' is the

temperature of the slow electrons; n56 is the unperturbed

density of the high-energy electrons' Plasma electrons

and ions obtain energy from jump' Energy flows'

obtained by electrons and ions, equal ZtpsVi,2EsVini''

Electrons lose energy at interaction with potential jump'

Energy flows, transferred to jump by low- and high-

energy electrons, equal Vin"T", 4ViV,o2(na - nw), %Vrnw'

Using the momentum- and energy-balance equations

and also the quasineutrality conditions, we obtain

V/Vo= n6sl(2 + ni+) << I '

n"= (ni*l2)fl + T"1216- 2(2Tolrpllt2l ,

n,o= (ni*!4)ft -7"/2tps+2(2Tolcp)tt2l ' (18)

From (18) one can see, that n" * 0, i'e' the

distribution function of electrons, trapped by potential

hump, has three-hump-type. From (18) it follows that

for jump separation from the potential hump n5 should

be large. It is should be noted that during hump

formation time the plasma electrons have no time for the

response to the field initiation, and are trapped by the

hump field. In this way the slow electron group is

formed, which is necessary for the jump formation

Similar processes for the potential distribution and

particle behaviour have been observed in a numerical

simulation t7l. The beani injection into the plasma leads

in numerical simulations [7] in certain conditions to the

hump formation, to jump separation from the hump and

moving it inside the plasma at a thermal velocity of

plasma electrons' After that former hump becomes

strong double laYer (see Fig. 1d)'
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