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Abstract
In this paper we v linear and nonlinear behaviour of modified convective cells and vortices in

nonuniform dustv with perpendicular and parallel to the magnetic field plasma flows,

and in basically two physical systems, with stationary (corresponding to the case of Shukla-

Varma mode) and ary (i.e. taking part in perturbations) dust particles. For the case of stationary

ific profiles for the sheared plasma flow and the dust density, we analyze the

to deduce the growth rate. A threshold is also obtained for the wavenumber

separating spatially and convective modes (growing in space) due to its interaction with the

sheared plasma flow. In
the presence of various
possible nonlinear solu

single and double vorte.

nonlinear regime, for both stationary and nonstationary dust particles, and in

flows perpendicular and parallel to the magnetic field lines, a variety of
driven by the nonuniform shear flow and dust density is presented, i.e.,

chains accompanied with zonal flows, and tripolar and global vortices.

Keywords:
shear flow. coherent , vortex chain, tripole

dust, by choosing some

eigenvalue equation in

1. Stationary Dust. The
Derivations

We use the model [1]
component electron-ion-du
equilibrium perpendicular (w

magnetic field Bs?, along the
(drift) % = vo@)Vr. The basic

and

a nonuniform, three-

y plasma with an

respect to a uniform
is) nonuniform flow
is then

unperturbed number of charges residing on the surface

ofthe dust grains which are negatively charged.

From the ion momentum equation, the ion and

electron continuity equations, and by using Poisson's

equation, we obtain, tor ldl)tl ( C)1 = eBnlmi, the

following expression for the conservation of the charge

density:

eo@f (r) = efnn(x)- ny1 ) +Zun*(x)l, (l)
where @6 is the unperturbed potential, O'i =
a2@oldf, nis is the un number density of the

the electrons, i for theparticle speciesj (j equals e

ions. and d for the dust ains), and Za is the

*. i;.,x 
va(o + @o) . vr

Ia1v]o+ a'i@)-of (x)+ fi(na- n,ll= o, Q)t -" l

or, for the total potential Y = @ + @o as

v,@y= jr4
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Here the prime denotes derivative with respect to the x-
coordinate. The nonlinear equation (2), which describes
the evolution of the electrostatic potential in a dusty
plasma containing a nonuniform background of
stationary dust grains as well as equilibrium density
inhomogeneities and sheared plasma flows, is analyzed
both in the linear as well as in nonlinear regimes.

2. Linear Analysis
Within the framework of a local analysis, we obtain

from Eq. (2) the dispersion equation for the Shukla-
Varma (SV) mode [2] that is modified due ro the shear
plasma flow. In the nonlocal case, for the perturbations
of the form <D = 6 exp(-iat + ikyl), the necessary
condition (viz. the Rayleigh type) for the instability can
be readily found by assuming a complex frequency ro =
at + ia)i, and integrating perpendicular to the flow
direction, i.e. in the x direction. We have the Rayleigh
condition

Forz6s satisfying nao= Botodalog [1 - tanh2(tcx)]l2eZo,
the solutions of Eq. (5) become Legendre functions of
the degree 1, and ofthe order y= (kj + l)tt2lrc. The only
localized solutions for 4 --> +1, i.e. for-r -+ 16, are
obtained if v2: (G + D/r2 = 1. The wave becomes
convectively unstable (growing in space) because ofthe
resonant interaction with the flow, provided that the
wavenumber satisfies the condition kr> (rc2 - 1)1/2. In
that case, assuming a small deviation 6'ft, of the stable
value of the wavenumber ftr, and taking ar -) at + i@i,

one can find the following expression for the
corresponding growth rate

xv v.v,l
II-r

["vlv- *"*uri,=o, 0,= t.#,. (3)

I * -L;-dt Bo"

v,!(i_ ezon'*(x) 
=0.Bo€oa

(4)

Thus, an absolute instability is possible if at any point x.
in the transverse direction (perpendicular to the direction
of the flow), the condition (4) is satisfied. The presence

of the dust density gradient modifies the standard
condition requiring the existence of an inflection point
in the flow profile.

Further linear stability will be discussed more
closely for some specific profiles of the shear flow and
the dust number density. We suppose that the flow
profile is described by the following well behaved
analytical function v6(x) = u + aKt^nh(Kx), where r-r
defines the characteristic width (slope) of the shear flow.
We now proceed calculating appropriate derivatives of
vs(.r) and introducing a new variable 4 = tanh(Kr), and
by assuming a physically interesting case when u = o)l
ftr. The linear equation for the perturbed potential can be

written as:

(t -n2) t9 -2n4+[r-1:l -t-dq' dq I Kz_l-n'

.#in.d#*ryld'=o (s)

I

(6)

In the opposite limit, the wave is damped.

Now, for the given profiles of v6(.t) and na6(.r),

using the Rayleigh condition we find the following
connection between the flow width rl and the critical
points for the instability tanh(r"r")= (l - ll(2K2))1t2.
Thus, an absolute instability at the point x. for modes
with wavenumbers satisfying this condition can be
expected. Furthermore, it follows that there appears a

limiting value Kl = 0.71 above which the critical point x"
becomes complex, i.e., the Rayleigh type instability
vanishes.

3. Nonlinear Solutions
For a linear dust density profile nae(.r) = uByesqxl

eZ6, nonlinear Eq. (3) can be integrated. Further, we
search for solutions of the form Y(r, y) = Yr(-r) +
Y2(x) cos(ftry), where lYr(x)l > lYz(*)|, which yields the
following set of equations

@._46ky3z-I)l dvo-'- rcn(z*-DI d, l,="

t)v,r'r
I " 2coshl V,lrSuno*1' A)

f^+-ri-rjv,r"r
\dr' l

ltcIO-
\dx'

=-BY2@)
sinhIY, (x)-uBox]

(8)
2cosh21Y, (x)-uBoxl

Equations (7) and (8) can be solved numerically. Well
localized (in the.r-direction) solutions in the form of a

double vortex chain associated with a strong gradient of
the potential in the region between two vortex chains,
can be found by solving the above system of equations
from the point x = 0. The strong gradient of the potential
Y in the central region, around the point x = 0,
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corresponds to a spatially

in the direction perpendicu
gradients. Consequently, aPart f
links of the two chains f
flow, the plasma particles are

move in the x direction bY

experimental situation, such

represent an efficient barrier

transport in the -r-direction, i.e
plasma nonuniformities.

there exists a class of values

for which the above descri

More details regarding this nu

found in Ref. [3].
A completely different t

i.e., carried by the flow, non

found for the perturbed

(2), in the case of a quadratic

the linear shear flow profile
for a quadratic dust number

2asendl eZ6 - bsenarzl eZ6,

parameters that describe the

Integrated Eq. (2) in that case

s(Q + asxz), wherc 9 is an

given argument, which we take

f'6 + F,. (<D + a6x2). allowing
have different values inside

circle with the radius 16.

solutions independently outs

circle and match the solu

the circle. The quadrupo

straightforwardly in the form

@ou,(r,0) = do Ko(hor) + dz

r > ro,

(D,"1r,e;= \t -t(u'::trft
+ coJo(Lr)*frrt,tlO-h

f ) fo.

Here, Fsout = 0 and we have

Fi" = -h', and Kn.2, Js.2 are

Bessel functions, respecti

integration do.z, co,z. Fd", Fi".

be found from the a

the given circle, i.e., from the

9, the continuity of the gradie

Coherent Structures in Nonuniform Streaming Dusty Magnetoplasma

and strong zonal flow
r to the basic state

being trapped in the

laterally to the zonal

itionally prevented to

zonal flow. In a real

configuration should

or the plasma particle

in the direction of the

, it can be shown that

parameters B and k,

solutions are possible.

rical procedure can be -4

of non-propagating,

inear solutions can be

I <D starting from Eq.

I <Do(-r), i.e., for

) = 2aoxlBo * us, and

ity distribution ra6(x) -
as, bs ara physical

in the basic state.

Y21Q_ + bsxz =
trary function of the

the linear form as 9=
or the constants Fs.1 to

outside of an arbitrary

us, we search for the

and inside of the given

obtained in that way at

vortex can be found

,(),6r)cosQ0),
(e)

) bn+tan )r_ " " f-
2fr

>'0

?,,f*"o,,,

.3
0

x

Fig. 1 Tripolar vortex for the perturbed potential @,

driven and carried by the plasma flow. Lateral
vortices have opposite direction of rotation with
respect to the vortex core. The step between
contours is 1.

from the assumption that the given circle rs is an isoline

of the argument of 9. These conditions comprise

continuity of the potential O and the Laplacian V2O at

the given border. Although the analytical expressions

(9), (10) consist of monopolar and quadrupolar parts, in

fact they represent a tripolar vortex generated in and

carried by the linear profile of the shear flow, and for a
quadratic dust number density (Fig. 1).

4. Dust-Modified Drift Waves
In the previous analysis the dust particles are taken

as stationary, i.e., non-taking part in the perturbed

motion of the electron-ion fluid. In some limits
however, i.e., for very low-frequency processes their

motion should be taken into account [4]. Assuming

Boltzmann distribution for electrons and using plasma

quasineutrality condition, and continuity and momentum

equations for ions and dust particles in a cylindrical
plasma system with perpendicular flow, we obtain:

Here we have defined €'o@) = -dllBs4nisln"s' p2 = T"l

mit\?, ao = nisln.s * malZ6mi, R is the radius of the

plasma column, V6 is some characteristic shear flow

(10)

Ff"' = bolao tr,
modified Bessel and

lv. The constants of
the parametef 16 are to

continuity conditions at

tinuity of the function

lr, 
- +rr)(@ 

+ oo)- @.(")- f,(')] = o, (l t)

of the potential @, and
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velocity, and we use the normalization:

g. V,=RV, .
dt

(@, @0,5r;= 
(o'3ii') 

.
Bo RVo

Apart from possible solutions similar to those found in
the preceding text, steady state solutions of Eq. (1 l) can
be found after integration which yields the following
equation:

(V1+L')v= e (r),
where k is a constant of integration, and g(r) = -R2((Do
+ €dlaop2.For a quadratic function g, after some

algebra the solution ofEq. (12) can be written as

Y (r,01 =4 r, t, (kr)cos(n 0) +

coJo(kr)+ cr2 + const., (13)

where cs and c are some constants. Keeping the third
harmonic in the summation only, we obtain the contour
plot of the vortex that is presented in Fig. 2. The
structure resembles experimental result which is
obtained in a DC discharge in an unmagnetized dusty
plasma [5]. In the latter, the dust vortex flow is
generated by a small biased metal plate.

Fig. 2 Global vortex representing a cylindrical chain of
counter rotating steady state vortices for the total
potential in a cylindrical dusty plasma. The step
between contours is 0.5.

Structures in Nonuniform Streaming Dusty Magnetoplasma

(r2)

5. Dust Drift Waves
In this section we analyse very low-frequency

perturbations in dusty plasma with a nonuniform plasma
flow 7s = vs(x)?, which is almost parallel to the lines of
a sheared magnetic field B'e = Bs?. + f(x)Bo?r,lf(x)l <
1, and with the dust density gradient in x-direction,
assuming Boltzmann distribution for electrons and ions,
and using quasineutrality condition. Parallel momentum
for dust particles can be written as

I'

l+.+ |,xY,e.v,l[r,, + un(x)]
ld, Bo '

A:R
at Vo

Eq. (1a) can be integrated yielding vzt = p. @, provided
that

vo (r) + fr(x)= F' I p(x)- Bourxl,

fi@)= Ao"f(x) , p'(x) = Bovo @)f (x). (15)

Using Eqs. (14), (15), the dust continuity equation can

be written in the form

. . Ev-, eZ" dQ
+ vo(x) a;=-ra a,

[#.;u 
x v'(o+ o,", o']

t(l - p?vl)o- Y(r)- 6(")l = o .

(r4)

(16)

Here p6 = Ca/{)a, Cza = Z2aT"r/md, Ter = Z26n6sTiT.l

fma(nisT.+ n"sT1)1, Y(-r) = Bs{r^filogn*o, (@) = cf2(x),

c = maTerFlez, and, F is a constant of integration.

Tripolar vortex solution of Eq. (16), similar to Eqs.
(9), (10), and traveling with the velocity u, in y-
direction, can be found for specific profiles of the basic

state functions/(-r), vs(x), z6(-r) given by the following
equations

f(x\= bx + u' 
.

Bo vo (x) vo (x)

v,^(x\+2^ (ou*, )- Fbx=g.yo(x)\ 4 , 
J

t1

rrogno(x)l'= EftO^ #,lZ*,,1;fi ftzl

For some profiles of the basic state functions a single
chain type solution, resembling Kelvin-Stuart cat's eyes,

can be written in the form

iD(x, Y) = u, Box - p(x)

| , ,\rD I
+A log2lcosh(k,r)*lr -*l cos(ft"y)1. (18)

t \ P't 
l

A solution in the form of a double vortex chain can be

@
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found provided that

fkt--! |
Bn vnl

,, . c'Oa 1v^(x)+r ' ' +F(
Bo vo (x)

flog no(r)]'+-I9L
Bort

where ct is some constant.

To conclude, plasma

servins as sources of free

are responsible for the creat

stationary nonlinear soluti
tripoles and global vortices. Tri
structures in a dusty

been found earlier in several e

rotating fluids [6] and they are

of our planet [7].

Coherent Structures in Nonuniform Streaming Dusty Magnetoplasma

u, - cr)=0 
'

=0,
o ("{)

ities studied here,

for linear instabilities,

on of some soecific
1.e., vortex cnalns,

ar vortices are novel

although they have

with ordinary

observed in the seas
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