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Abstract
We investigate nonlinear stationary structures in a system of coupled equations describing drift wave

turbulence and associated self-consistent zonal flows. The short scale drift wave turbulence is described
by a kinetic wave equation for the action density of drift waves, whereas the longer scale zonal flows are
described by a dynamic equation for the toroidally and poloidally symmetric component of the potential.
A variety ofradially propagating coherent structures such as nonlinear periodic wave trains, solitons and
shocks in the modulation envelope are shown to be possible.
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1. lntroduction
Recently, there has been a resurgence of interest in

the study of zonal flows generated by drift wave
turbulence in toroidal magnetically confined plasmas [l-
41. ZonaI flows are radially structured poloidal flows
with toroidal and poloidal symmetry (m = n = 0), which
are generated by a modulational instability mechanism
operating on the turbulence. Physically, energy is
pumped into longer scales because of an inverse cascade
in the turbulence and m = n = 0 perturbations are
preferred because they are unaffected by magnetic shear
in the confinement device. The sheared zonal flows are
typically randomly oriented and induce a strong
refractive effect on the propagating drift waves. In the
weakly turbulent limit, this random shearing refraction
leads to a quasilinear diffusive spreading of the drift
wave turbulence spectrum in the radial wavenumber
space, finally producing a nonlinear stationary state with
random phased, near Gaussian, turbulence. This limit
has been extensively studied in recent years [4] and has
led to the conclusion that the saturated drift wave
fluctuation level is quenched by zonal flow effects to
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amplitudes well below the typical mixing length
estimates 1e$*f1 - (p"lL,)(p" is the ion Larmor radius
at electron temperature and is a measure of typical
scale-length of turbulence and Z, is the scale-length of
density gradient driving the turbulence and subscript M
refers to mixing length saturation level), and to avalue
determined by the neoclassical damping rate v of zonal
flows [5], viz. (e$rlT) - (p,/L,)(v/a.)r/2 (where vla_ <
I, ar. being the typical drift wave frequency and
subscript S on fr refers to new saturation level). The
associated anomalous transport coefficients also show
the above improvement. It is easy to understand the
improvement on physical grounds. As the damping
parameter y drops, the zonal flows become stronger and
limit the turbulent fluctuations to lower amplitudes. An
obvious question arises as to what happens as the
damping parameter y -+ 0. As the zonal flows get
stronger and stronger, the assumption of a weakly
turbulent state and quaslinear diffusion of the drift wave
turbulence spectrum become questionable. Instead, we
enter a regime of strong turbulence where coherent
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Eq. (3) may be readily integrated to give the constants

of motion

w =v +#-#*ftu'k, =constant (4)

and suggests an exact solution to eq. (1)

Nk(k,, k y x) = Nt(W(k,, x), k r)' (5)

krW may be physically interpreted as the frequency of

the drift wave as seen from a frame moving radially

with velocity U, corrected for effects due to velocity and

density perturbations - (v + d2vld*) terms - associated

with the zonal flow; this frequency is an invariant (a

constant of motion) because in the moving frame, the

zonal flow structures are independent of time. We thus

expect, that as the drift wave encounters regions with

different v(x) and v"(x) (prime denotes an -r derivative),

its t, will change in such a way as to keep the wave

number k, and the frequency (krW) constant. When ft,'

k, <. l, we may rewrite the constant of motion W as

W = K +/(.r) where K"= k'+ Ul2lg and/(;r) = v + v" +

tq - Q + u2l4q). This is of the standard form of a

kinetic energy term (K]) and a potential energy term

(/(x)) combining to give a constant of motion. This

equation indicates that if/has a maximum valuefi, we

must distinguish between 'trapped' drift waves with IV <

fi (which sample only parts of x-space because in other

parts K? < 0 and 'untrapped' drift waves with W > f^
(which sample all of x-spacebecause K'2 > 0

everywhere). The expansion of k2 << 1 used above is

only a simplification to make the algebra less tedious

and is no way necessary physically for the trapping of

drift waves. The physical process responsible for

trapping of drift waves near the minimum of a velocity

shear layer may be readily studied by writing the

characteristic ray equations for drift wave trajectories

viz. (in dimensionless variables), dxldt = -zk'kyt(l + l&)z

and dk,ldt = ky[ (dvld.x) + (d3vldx3)] and dkrldt = 0'

Taking v near aminimum as v = vm + v'l(x - x^)212 we

get the equation @2k,ldf) + U4v'1,10 + P)21k, = 0. For

v; > O, this is the equation for a nonlinear oscillator as

may be readily verified by multiplying the equation with

dk*ldt and integrating once. The solution may be

described in terms of complete elliptic integral of the

second kind

4!'=r 4(,*d2\ro",(U ,dx\ dx'l

#)d=o (1)

23!+*r e)k 
[1+/<'J

itude of zonal flow
normalizations: -x to

: pJL,)c,, t to p,lv*, Np

L)2 and lL, v to cslL,.

of drift waves given bY

,krl(l + k2)'z. Eq. (1)

given by
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'o) (6)

where we have used the boundary condition, k" = ko,

)k,/a = 0 at t = 0. When t3, t rt .. 1, the solution may be

written as

[ , -^',,,, 1

k, = k ocnlext of {zt',vi t(t + k', * k'.\'\"',1
[ ' ' -J]

=k."o"(\E4r'i tl e)
where K denotes the complete elliptic integral of first
kind. Thus k, and x are both periodic functions of r
which become simple trignometric functions in the limit
k", kr 11 1. Physically, as the drift wave creeps up the

velocity shear layer from its minimum, it loses its k, (x-
momentum) in the process of satisfying the WKB
conditions, the ray eq. (7). Finally ft,2 hits zero and the
wave gets reflected getting trapped in the trough,
oscillating back and forth between the two reflection
points with a typical bounce frequency f{247^> tin
terms of unnormalized variables (c 

"l 
L,)(lg p")(2 d[d2v ^l

dx21lv-1r/21 which is related to curvature of the shear

layer near its minimum.

Following up on the discussion after eq. 2 we may
now argue that solution for stationary eqs. (1) and (2)
may be obtained by solving the nonlinear self-
consistency condition:

The entire nonlinearity in eq. (8) comes from the
dependence of the right side on/= v + v" + td - t - v2t

41fi which, in turn, is determined by the choice of the
trapped and untrapped action densities Nu,r(W, ky).

Since any function of the constants of motion W, ft, is an

exact solution of eq. (l), there is an arbitrariness in the
choice of Nr.r. This arbitrariness is well known in the
standard BGK problem also. Ultimately, the choice of a

suitable Ny,1 will be decided by conditions of
accessibility as one follows up on an initial value
problem and/or questions of stability of the nonlinear
stationary states being discussed here. But these
questions are beyond the scope of the present
calculation and have to be treated separately. Here, to
illustrate the nature of typical nonlinear structures, we
shall make choices of N7, Ny on intuitive grounds. We
assume

Nou

f ("or-' k,lk,, k "/(l + t', + *';')

= (zt r/'^)"'t t1t + kzr + k

1t(d2v ldxz) - w + (I (dv ldx) = (-l/2) (d ldx)

Itlr- lr-
| | dkykyl I dwJ(w,ky,f)Nu(w.ky)
lJ: 'lJr^
t\
L

{tt-'"" [' 
+ r" + 

{{w - r t'' . u''.,}']'l

Nu(W, kr) =

Nr(W, k r) =

('.__ ) lr*'r,-p"'f'
Nor(f^- W)tt2 + Nou

1"+'f-

w>f^

f<w<f-

*['^ awilw.k,.f )Nr(w,0,,]l tslrr r.v. ".)1

where Ny(IU, ftr) and Nr(W, ky), are the action densities

for untrapped and trapped parts of the stationary drift
wave turbulence, J(W, ftr, /) is the Jacobian for
transforming ft, variable to l,lz and is given by the
express

t .,^ rJ=l(w-f)"'+U/2k,1/

(10)

The two distributions are chosen to be continuous atl=
L and the ft, dependence is chosen in such a manner that
there is no symmetry in the +y directions. This
asymmetry reflects the fact that drift waves typically
propagate in either the electron or ion diamagnetic drift
direction. It also ensures that the required integrals do

not vanish even when U -+ 0. For large k,, k, the
distributions drop-off as a power law which is typical of
many saturated turbulent states. The action density for
trapped waves is chosen in the so-called Bohm-Gross
form with a maximum at the bottom of the trough and
the phase space density dropping off to N,, at the
maximum as a square-root function; this is extensively
used in the study of trapped particle effects in large
amplitude electrostatic waves [7]. With this choice, we
find

pv" -w+Ut/ =(ar- a,)(r/ +v")
| ,,.1'

- 0, [(u- - r)''' ]
-(3a"t2- a,)fe^-r)'l (ll)

where, ao = (3fNoull6)kr,L6, ay = (3LNorll6)1g,5 and
a2= (nNo7/8)k,d. The coefficient ao arises from the
contribution of untrapped waves whereas the

(e)
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coefficients at a'i.d q2 arise the contributions due

to trapped waves. We now eq. (11) in various

limits. Let us first ignore v, trt, the nonlinear terms.

analyzed in x and

q2) where 4 is the normalized
ionU=(ar-a,)(l-
wave number for the

shock-like structure with V going from 0 to v. after

ringing a few times periodically around the final value.

If the damping terms arelatge, there is no ringing and

the shock solution goes monotonically from 0 to v.. If
the dominant dissipative term is viscous (v = 0, 1t,

large), the monotonic shock solution may be analytically

written down in the form V = K4lF2{exp(Kz(x - Ut)ltt)l

[ + exp1K2{x - ut ll2tt)12it.

3. Conclusions
In conclusion, we have looked for stationary

solutions describing nonlinear coherent structures in the

coupled problem of drift wave turbulence and associated

self-consistent zonal flows and find that when drift wave

trappingis important, a variety of radially propagating

structures such as periodic nonlinear wave trains,

solitons and shocks in the modulation envelopes may be

formed. These solutions represent alternate saturated

states to modulation instabilities of drift wave

turbulence - nonlinear states which are dominated by

coherence and drift wave trapping in contrast to the

usual saturated states dominated by random phases and

quasilinear diffusive spreading of drift wave spectra.

Such nonlinear coherent structures may have already

been observed in the collisionless (v = 0) strongly

turbulent drift waves imulation of Lin et al. [1] and may

also be responsible for observed phenomena such as

intermittency, oscillations and bursty transport in

experiments on drift wave turbulence [8].
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