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Vries (mK-dV) equation is derived for perturbed potential and solved in order

re for the propagation of nonlinear solitary waves (solitons) in a magnetized

plasma having relativistic ions and electrons. It is found that fast and slow

. and only the fast modes conespond to the solitons. Solitons are possible for a

propagation angle g (angle between wave vector and direction of the magnetic

ratio (milm"), temperature ratio (TilT") and relativistic speeds of ions and

ic field is to decrease the soliton width and energy. The amplitude and energy

width gets wider when it propagates into higher plasma density region. The

r angles with the direction of magnetic field correspond to the solitons of

ler width.

electron, potential, mK-dV equation, magnetic field' inhomogeneity, soliton

plasma taking the Boltzmann distribution for electrons.

Fully relativistic ion fluid equations were also presented

to study the double layers, spiky solitary waves and

explosive modes considering the Boltzmann distribution

for electrons [3]. However, Kuehl andZhang [4] sug-

gested that in place of electron Boltzmann distribution

the finite electron inertia should be taken into account

while studying the propagation of solitary waves in a

relativistic plasma, since the wave velocity can be

comparable to the electron thermal velocity. Later'

taking account of finite electron inertia and ion

temperature, a limit on ion drift velocity was obtained

for existence of the solitons in a relativistic plasma [5]'
Recently, the effect of electron inertia has been shown

to decrease the phase velocity, amplitude and energy of

the solitons in a relativistic plasma [6].
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Soliton characteristics are altered when a soliton
propagates in a nonuniform plasma and the K-dV equa-
tion describing the soliton behaviour is modified either
by varying coefficients or by some additional terms.
Assuming that the soliton width is small compared with
the scale length of plasma inhomogeneity, arbitrary
amplitude soliton propagation in nonrelativistic plasma

[7] and small amplitude soliton propagation in
relativistic plasma [8] have been studied. It has been
shown that the density inhomogeneity considerably
modifies the soliton behaviour in relativistic plasmas

t8,el.
It can be noted for most of the analyses on rela-

tivistic plasmas that only the ions are taken to be re-
lativistic. However, in space plasmas of solar wind [10],
boundary layer of the Earth's magnetosphere [11] etc.,
high-energy ions as well as electrons are found to be
streaming with relativistic speeds. Also, under the
influence of high-power laser radiation the plasma
particles may attain relativistic speeds. Therefore,
relativistic effects of electrons should be considered
with the ions to understand truly the behaviour of
solitary waves in relativistic plasmas. Considering the
relativistic effects of both ions and electrons, however,
Nejoh and Sanuki [2] studied the large amplitude
Langmuir and ion acoustic waves and investigated the
conditions for their existence in a relativistic plasma.

The analysis carried out in Ref. [12] with rela-
tivistic ions and electrons was restricted to homo-
geneous and unmagnetized plasma. But invariably we
encounter inhomogeneous plasmas under actual con-
ditions, e.g. more so closer to the sheath regions, and the
soliton behaviour is also modified under the effect of
magnetic field [3-15]. Therefore, in the present paper,
we study the effect of magnetic field and plasma density
on the soliton propagation in a plasma having both
relativistic ions and electrons. Using reductive pertur-
bation technique, we derive a modified K-dV equation
for the perturbed potential and find that it admits the
potential structure of compressive solitons for a par-
ticular range of wave-propagation angle.

2. Phase Velocity and Limit on Wave-
Propagation Angle
We consider a magnetized collisionless spatially

weakly inhomogeneous plasma consisting of relati-
vistically streaming warm ions and hot electrons. A
small amplitude ion acoustic wave is assumed to propa-
gate in (x,z) plane at an angle 0 with the direction of
magnetic field B (= Boz). The ratio B of particle pressure

to magnetic field pressure is taken to be small. Kinetic
effects such as Landau damping, heat conduction,
viscosity etc. are neglected. The electron Debye length
is taken to be much smaller than the dimensions of the
system and the plasma is quasineutral. Under these
conditions, the following basic fluid equations are
obtained in normalized form.
For ion fluid:

ry+(nv)x+(nvr)r-O

(Tiv,), + v,(Tiv,), + v r(yp,), + Q,

- ({2i/r4)v, + 2on,ln = O

(vr), + v,(vr), + vr(vr), + (Qilrtt )v, = o

(1a)

(1b)

(1c)

(vr),+ v,(vr),+ vr(vr)r+ Qr+ 2onrln = 0 (1d)

For electon fluid:

(n"), + (n"u,), t (n.ur), = Q (1e)

(m"/m) f(y"u,), + u*(y"u,), + ur(y"u,)rl

- Q,+ (Ai/qi)ur+ (n")"|n"=Q (lf)

(mJm) f(ur), + u"(ur)" + u,(ur),)

- (d\lap)u, = O

(mJm) [(u,), + u,(u,)" + u,(ur),]

- Q, + (n")r/n" = Q

Poisson's equation:

Q*+Qo-ne+n=O ( 1i)

In these equations, ion and electron densities are
normalized by the unperturbed plasma density n6, fluid
velocities by the ion acoustic speed, potentialby KT"/e,
where K is the Boltzmann constant. Time and space are
normalized by the ion plasma period and electron Debye
length, respectively. Subscripts t, x and z represent the
differentiation. O1 is ion gyrofrequency and ooi is ion
plasma frequency and their ratio Qlatoi= Bo"[eo/no^r.
Ion to electron temperature ratio (TilT.) is taken as c. f1

- (l-voz1rz1-rr2 and y. = (l-uo2lc2)-tl2, with y0 and ll0 as

the ion and electron streaming speeds in.r-direction with
weak relativistic effects, i.e. v6, us<.c. For the sake of
simplicity, we have assumed that the ion and electron
speeds are relativistic only in the _r-direction. It can be
noted from ion momentum equation (lb) that the
specific heat ratio for adiabatic ions is taken as 2, since

(1e)

(1h)
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the number of degrees of
2. Further, the continuitY and

used for electron fluid, since t

relativistically streaming speci

For employing the

nique, we use the following set

t8,14,161.

€=ett'(k'rlLo-t)
= ett2(xsin9lLs * Zcos9l

t = €3t2(k'r) = e3t2(xsin? +

Here, ia is the phase velocity
(f,r) space and e is a small d

parameter. ft is unit vector a
propagation in (x,z) Plane
direction (z-axis) of magnetic

The quantitigs n, ne, v,

around the equilibrium state

expansion is given by

7=fo@,2) + efi(x,z,D + e2"

g = e g {x,z,t) + e2 g2(x,z,t)

h = e3t2hr(x,z,t) + e2hr(x,z

s" = ss * t3t2ss(x,21) + ez

where,/: (n, n., Q), I = (vz, uz

u.

Now we use the stretchi

of dependent quantities [Eq.(3

lEqs.(l)l and find a set of equ

of e. The equations obtained i
na, Qr, vs, ryr,'t4, t't1, Ityl i
phase velocity relation for the

)"0= (vo+ uom"l mr)sin0

t / 1t + 2o)cos20- m"(

This equation indicates that

ponding to plus sign, and the

to minus sign, can occur in

velocity depends on ion and e
(relativistic effects), their

and angle of wave Propagat
increases with increasing ion

propagation angle, but it
electron streaming sPeed.

For real phase velocity,

the square root terrn of Eq.(4)

reads
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for the present case is

equatrons are

electrons are taken as

ve perturbation tech-

stretched coordinates

10n acoustrc wave ln

ionless expansion

the direction of wave

ng an angle 0 with the

and 0 are expanded

of e and theirn terms

(2)

tan203mi(l + Zo)lm.(vs- uo)2 . (5a)

For positive Ls, the first term of R.H.S. of Eq.(4) should

be greater than the second term. Considering this point'

we find the following condition for positive Le.

tan20> (I + 2o)l(vo2 + us2m.lmi) (5b)

On the basis of Eqs.(5a) and (5b), we can say that the

ion acoustic wave will propagate if the following
inequality is satisfied in the plasma conditions.

(1 + Zo)l(voz + u62m"/mi)

<tan20 < mi(l + 2o)lm"(vs - us)z (6)

Now we use some typical values of v0, ilg and o to

find the limit on wave-propagation angle 0 for existence

of the wave in the plasma. For a relativistic space

plasma [5,17], we select ve = 70, uo = 35, o = 0.04 for

mylm" = 1836 and find that 0.850 < 0 < 5l'830. There-

fore, it is deduced that the fast and slow modes

propagate in the plasma when the angle 0 falls in the

range assigned by Eq.(6).

3. Modified Korteweg-de Vries Equation in
Perturbed Potential

The reductive perturbation treatment gives different

equations in second-order quantities ft2, tte2, Q2, v,2, vyz,

rzz, utz, uy2 and ur2. Elimination of these quantities with

the help of phase velocity relation and equations in first-

order quantities yields the following modified

Korteweg-deVries (mK-dV) equation in perturbed

potential @1.

Qr,+ aQrQrr+ Fh6aq- arjQtEno,- a2(ng,,= 0 (7)

The coefficients appearing in the mK-dV equation (7)

are given by

s1= {CfD2 - (milm")Glcos20}/

2)"02(vo -us)DEsin?

B= lCDlb2E(milm")

+ (milm)nsC(sin2g + Yrcos207

- nsG(sinz? + y.cos2e111l

2b2(m,lm") )'oo ro(uo - us) sin0cos20

a1 = fFCDz + F(my'm") GC - 4o)'sD2 cos20

- 2C DEussin0ll2)"sno(vs - us) DE sinO

az= LolF(vo- u)CDsin9

(x,z,t) + ...,

,z,t) + ..., (3)

h = (vy, ur) and s = v or

tEq.(2)l and expansion

in basic fluid equations

ons in different orders

first-order quantities n1,

2.1 yield the following
acoustlc wave.

o- uoyzsin'o/m, (4)

the fast mode. corres-

mode, corresponding

plasma. Also, the phase

streaming speeds

and temperature ratios

The phase velocity
ing speed and wave-

for higher values of

quantrty appeanng ln
be positive. which
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- G(Eussin? - FD) - Zo).oD2cos20f/

2nsCD (v s - ao) sin0cos20

Here, b = d\lrtei C = ho- v6sin0; D = Lo - u{)sinl; E =
C2 - 2ocos20; F - 2ocos20 + Cvssing; G = (l +
2o)cos20 - C.

Now we solve the mK-dV equation in order to
study the structure of perturbed potential fi. The use of
transformation ( = 6 - Vr , where Vis a constant, gives
the following solution of Eq.(7) at constant density
gradient [8,9].

Q, (() = 13 (V + a, ( n o)t u lseclf
{(,/O;;3;;W} (8)

Inspection ofEq.(S) reveals that it describes a potential
structure which reaches a peak at ( = 0 and vanishes at (
-+ t-, with the peak value = 3(V + a1(ns,ya(= S^, sayl
and half width = ^f4fliOlZAJ (= Z, say). This
structure is known as soliton with amplitude (@- and
width Z. Soliton energy E, [8] can be calculated using
Eq.(S) and we find that 4 - 40^2L8.

4. Results and Discussion
It is observed for slow ion acoustic mode that the

soliton width is not real, since the dispersion coefficient

B attains negative values. Therefore, the soliton propa-
gation is not possible for the slow mode. However, B is
always positive for the fast ion acoustic mode and
thereby gives the real values of soliton width. Further,
the nonlinearity coefficient a is positive for the fast
mode and therefore it is concluded that the compressive
solitons are possible only for the fast mode. For equal
speed of ions and electrons (i.e. vo = ao), it is observed
that a, B and a1 -+ - which make the soliton amplitude
and width indeterminate, indicating that the soliton
cannot occur in the plasma having ions and electrons of
equal speeds.

Effect of plasma density n6 or the soliton amplitude
p- and soliton width Z is shown in Fig.l, for different
values of relativistic electron speed uslc. This figure
shows that the soliton amplitude gets lower and its
width gets wider for increasing values ofze. This can be
explained on the basis of coefficients a, B and a1.
Numerical calculations reveal that B and a1 decrease
with increasing zs, but dremains constant. Further, the
decrease in a1 is faster than the decrease in B, which
causes the soliton amplitude to decrease and the width
to increase for higher values of plasma density. Since
the soliton energy E" is directly proportional to Q^2, it

0.9

r 0.8e-

0.7

0.6

0.5 0.6 0.7 0.8 0.9
Do

Fig.1 Effect of plasma density n0 on the soliton
amplitude @, and soliton width L. Here, vorc =
0.0161 (for uolc = 0.0322l,, volc = 0.0322 (for uotc =
0.0161 ), no = 0.8, no,= 0.002,5 = 0.01, V= 0.0009, b
= 0.0015 (4 = 5.8 x 10-iT), o= 0.04 and 0=20o.

0r | | | | | lO.O
456789

Bo (10-?T)

Fig. 2 Effect of magnetic field Bo on the soliton width I
and soliton energy E". Here, volc=O.O322, uolc=
0.0161 and other parameters are same as in Fig.1.

will also decrease with increasing plasma density. The
effect of relativistic electron speed uslc is found to
decrease the soliton amplitude and to increase the
soliton width (Fig.1). However, we observe on the basis
of expressions for soliton characteristics that the soliton
behaviour with relativistic ion speed is opposite to that
with the electron speed.

Effect of magnetic field ,86 on the soliton
characteristics is shown in Fig.2, for different values of
wave-propagation angle 9. It is clear from the figure that
the soliton propagates with smaller width (Z) and lower
energy (d) under the effect of stronger magnetic field.
This can be seen from the expressions of a, p and a1

that only the dispersion coefficient B is a function of b.
It means B depends on the magnetic field, since b = d)il
ar, = Bo'[eolnor4. It is observed that the dispersion

1.0

2.5

2.O

1.5 m
J1.0 o

N

9,n (uo/c=0.0'161)
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that the soliton width becomes

the basis of numerical calc

increasing 0 that the soli
amplitude.
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