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ves propagating parallel to a uniform external magnetic field in a plasma

containing multiple ion species are studied analytically and numerically. Theory shows that the presence

of multiple ion species g
ion cyclotron waves are
against modulational ins
large near the ion cyclotr
with simulations based

good agreement with the
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split into two modes in a two-ion-species plasma. These waves are unstable
tability except for a small frequency domain. Their growth rates are especially
on frequencies. The evolution of the modulational instability is then investigated
on a three-fluid model. Theoretically obtained growth rates are found to be in
simulation result.
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1. Introduction
Astrophysical plasmas as
usually contain multiple ion

astrophysical plasma, hydrogen (H) is the major

component. The number density|
10 % of that of hydrogen. The
ions such as C, O, and Fe are mi

He. Recently, propagation of magnetosonic waves in a

multi-ion-species plasma has b

[1-6]. It has been then recognized that the presence of
multiple ion species significantly change wave

properties; linear and nonlinear
particle acceleration [3,4], an
energy [5,6].

In those papers, perpendicular waves were

investigated. In this paper we

which will therefore be mainly described here.
well as fusion plasmas
species. In a typical 2. Linear and Nonlinear Wave Theory
of helium (He) is about fluid model with multiple ion species,
abundances of heavier
uch smaller than that of aai +V. (n,»,)=0,
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wave propagation [1,2],
d dissipation of wave 9B _ Vx E,
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waves propagating along the external magnetic field,

i.e., Alfvén, whistler, and ion

found that multiple ion species have particularly

cyclotron waves. It is

significant effects on left circularly polarized waves,
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We discuss wave propagation on the basis of a
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where the subscript j refers to ion species (species a, b,
-+ -) or electrons (j = e); m; is the mass, g; the charge, n;
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the number density, and v; the velocity. We assume that
the external magnetic field and wave propagation are
both in the x direction (d/dy = d/dz = 0) .

The linear dispersion relations can be obtained
from the above set of equations as

K =w? - sz 0/(@FQ;). )

Here, Q; and @y denote the cyclotron frequency and
plasma frequency, respectively, Q; = g;By/(m;c) and ®,;
= (47njq%/m)"%; the subscript 0 refers to equilibrium
values. The quantity €; includes the sign of the charge
g;, and Q, < £, is assumed. The first term on the right-
hand side of Eq. (5) arises from the displacement
currents. In the following, their effects will be neglected.

The waves are circularly polarized. The electric
field as well as magnetic and velocity perturbations has
component perpendicular to the external magnetic field.
There appears no parallel electric field in the linear
theory. The minus and plus signs in the denominator on
the right-hand side of Eq. (5) represent left (L) and right
(R) circularly polarized waves, respectively. (Through-
out this paper, the upper and lower signs represent the L
and R waves, respectively.)

If we include kinetic pressure in Eq. (2), we have
electrostatic waves. In the linear theory, however, they
are decoupled from the electromagnetic waves given by
Eq. (5).

We show in Fig. 1 dispersion curves of the L waves
for a plasma containing hydrogen and helium ions with
the density ratio ny./ny = 0.1; hence, a = H and b = He.
The L waves have resonances at @ = Q, and at o = Q,,
i.e., at ion cyclotron frequencies [7]. The high frequency
mode has a cutoff frequency wy,

2, Q
o= ©)

v} (@2 +co2 + %)’

where v, is the Alfvén speed, v, = By/(47 2 ;nym;) 2. In
the frequency domain Q, < @ < @y, the L waves cannot
propagate.

On the other hand, the presence of heavy ions does
not drastically change properties of the R waves; we will
therefore restrict ourselves to the L waves.

For frequencies much lower than the ion cyclotron
frequencies, Eq. (5) gives

Wlk=v,(1 F fv, k), 7

where the constant u is defined

~13 % 3 %
2 Q3 j ng

In this low frequency regime, the dispersion
relations are quite similar to the ones in a single-ion-
species plasma. Hence, using a perturbation theory
similar to that in refs. [8,9], we can derive derivative
nonlinear Schrédinger equation for the low-frequency
waves.

For frequencies of the order of ion cyclotron
frequencies, the L waves have strong dispersion. It is
expected then that these waves are described by the
nonlinear Schrodinger equation [10-12]. To derive this
type of equation, we intorduce stretched coordinates

S=€(x-v,1), 9
T=E%¢, (10)

where ¢ is a smallness parameter and v, is the group
velocity, v, = dw/dk. We expand transverse fields and
velocities, i.e., their y and z components, as

ynl CXP[ll(kX _a)t)]’ (11)

and longitudinal field E,, velocities Vi, and densities n;
as

E=€E,+€E + . 12)

Then, after some algebra, we obtain the nonlinear
Schrodinger equation

a¢ EPﬁwz(|¢|_|¢0;) 6=0. (13)

Here, ¢ is defined as
¢=(B, t iB,)/B,, 14

and ¢ is the value of ¢ in the far upstream region; the
coefficient f is B = (1/2) 9?w/k?, and a is given as

Fig. 1 Dispersion relations of the L waves in a H-He
plasma with n./n, = 0.1.
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(Equations (13)—(15) are alsp applicable to the R
waves.)

We show in Fig. 2 coefficient & of the nonlinear
term as a function of the frequency @ for a H-He
plasma. For comparison, we also show, by the dotted
line, the coefficient for a hydrogen plasma. The shaded
areas indicate the frequency domains where the L waves
cannot propagate. The coefficient o is always negative.
It becomes quite large in magnitude near the resonance
frequencies, ® ~ Qy, and @ ~ Ny, and near the cutoff
frequency, @ ~ wy.

Coefficient B of the dispersion term is negative in
the frequency domain 0 < @ ¢ Q.. It takes positive
values in a small region just abpve the cutoff frequency
@,. It is negative in a higher frequency region up to Q.

The L waves are modulationally unstable when o8
> 0, and its growth rate I" for a perturbation with a wave
number X is given by [9,10]

r=(px |(2alof18-7)". 6)

Fig. 2 Coefficient o of the nonlinear term as a function
of the frequency . The solid and dotted lines
show, respectively, cases for H-He plasma and H
plasma.
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3. Three-Fluid Simulation

To further study nonlinear evolution of the L waves
in a two-ion-species plasma, we have carried out
numerical simulations of the three-fluid model, basic
equations of which were shown in Egs. (1)—(4). We
solved the initial value problem employing the pseudo-
spectral method. We assume that the waves propagate in
the x direction along the external magnetic field in a
periodic system.

We have chosen the mass ratio between the
hydrogen and electron as my/m, = 50. The helium-to-
hydrogen mass ratio is my./my = 4. The charge ratios
are gy/q. = -1 and gy./qy = 2. In an equilibrium state,
the density ratio is ny./ny = 0.1, and the magnetic field
strength is |Q.l/w,, = 0.5, so that ¢/v4 = 15.4. The time
step is @y At = 0.2. The number of grid points is 128.
The grid spacing is A, = 1.0 ¢/@,, for the wave with
wave number k = 1.6 Qy/v,.

First, we confirmed that the wave profiles given by
the solitary wave solutions steadily propagate as the
theory predicts. Then, we examined the modulational
instability. As the initial wave profiles, we used periodic
(sine or cosine) L waves obtained from the linearized
three-fluid equations. We then observed their space-time
evolution. We show in Fig. 3 profiles of B, and B, at
various times. Here, B, is defined as B, = B, + iB,; thus,
|B,| represents the envelope of the wave.

The wave number of the carrier wave is kv, = Qy
and the initial amplitude is |B,|/By = 0.1. The figure
clearly indicates that the wave is unstable. Figure 4
shows a time variation of the amplitude of the
modulation; B . — Big, Where B, is the maximum
value of B, and B, is the initial value. After the time
Qut = 50, the amplitude of the modulation keeps
increasing. Its growth rate is T/Qy = 0.026. In this way,
we have observed the growth rates of the modulational
instability for many different waves.

We show in Fig. 5 the growth rate as a function of
the frequency. The solid lines represent the theory. The
dots show simulation result. The growth rate becomes
quite large for frequencies near Qp, as well as near Qy.
In the frequency region right above @, (the shaded area
with horizontal lines), the wave is stable, because off <
0 there. The theory and simulation are in good
agreement.

4. Summary and Discussion

We have studied linear and nonlinear waves
propagating along a uniform external magnetic field in a
cold, multi-ion-species plasma; we have calculated
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Fig. 4 Time variation of the perturbation of amplitude.

linear dispersion relations and derived derivative
nonlinear Schrodinger equations for the low frequency
waves and nonlinear Schrédinger equations for the
waves with strong dispersion. Except for the frequencies
near g, the L waves are unstable against the
modulational instability. The growth rates are especially
great near the ion cyclotron frequencies. We then
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Fig. 5 Growth rate of modulational instability as a
function of the frequency.

investigated nonlinear propagation of the L waves using
a three-fluid simulation code. It was found that
theoretically obtained growth rates for the modulational
instability are in good agreement with the simulation
result.

We have studied on the basis of the fluid model.
Let us now discuss a kinetic effect; cyclotron damping.
Calculations show that the damping rates of the L waves
are extremely small for plasmas in magnetic tubes in the
solar corona; it is one of our major motivations to study
wave propagation in those plasmas. There, the
temperature is very high and the density is low. Hence,
the plasma is collisionless, and the main dissipation
mechanism of the L waves is cyclotron damping.

We estimate the cyclotron damping rate. From a set
of linearized Vlasov and Maxwell equations, we obtain
kinetic dispersion relations for the waves propagating
along a magnetic field as

2
kc?
w2

K v,
=1-2X 0% 1 + T
j O@-Q)  ow-Q)

w-Q,\
i 1 24

- ——=——exp|-= 17
TR ) ( o, ) an
We denote the real part of @ by ®, and imaginary part

by ®;. Then, for instance, for waves with @, ~ Qp., the
damping is mainly due to He ions and is given as
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g

; ~ /T wgﬂe QHe (03
r 2 pet vy (0, Q- 2Q%,)

2
_1[ 9 -
exp 2( - ) : (18)

For a H-He plasma with |ng./ny = 0.1, n, = 10®
cm™>, T = 100 eV, and B = 100 G, which are typical
parameters for coronal magnetic tubes, the above
equation gives @;/@, ~ 1077 for @, = 0.9 Q.. On the
other hand, the growth rate of the modulational
instability for the same wave with an amplitude B,/B, =
0.1 is I'/w, = 0.03. The damping rate is thus much
smaller than the growth rates of the modulational
instability.
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