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degradation ofparticle confinement caused by so-called
helical and/or toroidal resonance t5l. The analytical and
numerical results have not been completely understood,
particularly when a boundary layer associated with a
radial electric field is present. In the present study, the
effect of radial electric field on neoclassical transport is
analyzed in detail.

A model magnetic field is frequently employed in
most neoclassical transport theories for simplicity, but
the magnetic field are now calculated by using the
MAGN code [3,6] for fixed coil currents. Then, the
transport coefficients are evaluated for a realistic
magnetic field, such as one based on the large helical
device (LHD) parameters. Comparison between these
results and the results based on the DKES code [7,g] has
also been made.

2. Bounce-Averaged-Fokker-planck Equation
In the helical torus of our interest, the system as a

large number of field periods N in the toroidal direction
(0) and the rotational transport per period is small.
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Abstract
The poloidal rotation of particles may be modified in the presence of radial electric field, leading the

improvement of particle confinement. For a specific electric field, however, there exists a degradation of
particle confinement cased by so-called helical andl/or toroidal resonance. The structure of the boundary
layers and transport coefficients in cases with and without resonance are studied in detail bv usine a
numerical code for solving the bounce-averaged Fokker-planck equation.
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1. Introduction
A powerful tool for analyzing the particle orbit

topologies and related structure of trapped and passing
particles in helical torus has been discussed by solving
the drift kinetic equarion for plasmas with 3-D toroidal
geometry. Numerical codes based on this type of tool,
such as the DKES code [1] and the PFSTL code [2]
have been developed to study the neoclassical transport.
In the previous papers [3,4], the analytic representation
for the longitudinal adiabatic invariant for the general
magnetic configuration instead of a simple model
magnetic field, is presented in the convenient form for
the numerical calculations for realistic magnetic
configurations. A powerful method based on such
expression was applied to the study of the transport in
the wide range of parameter space specifying the
magnetic field geometry.

The ExB poloidal rotation may suppress the loss of
helical trapped particles and it consequently leads the
improvement of particle confinement. For a specific
value of electric field, however, there is a possible
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Under this assumption, the particle motion can be

separated into the fast periodic motion in fdirection and

the slower motion perpendicular to this direction. After

averaging with respect to the fast periodic motion, the

slow motion can be described in terms of the

longitudinal adiabatic invariant discussed in [3]' In that

situation, the main part of the particle distribution

function is independent of the toroidal angle, i.e., f(8, p,

o, V, O), o= +l being the sign of the parallel velocity,

and is described by the following bounce-averaged

Fokker-Planck equation [4]

+ *9. -+ *$*o" ua=a(r,r). (r)e dt) dtlt e dvt da

.r^ lmv,,F r
J,,=-4!!.t *o : tt do.a =d -+ dQ, (2)-u N I B Jr,,Bo

with Va being the loop Voltage, E the energy, trr the

magnetic moment, t1r the magnetic surface, r9 the

poloidal angle, and C is the bounce-averaged collision

term. The rotational transform is related to tyrin Eq. (2).

If we define the distribution function as / = fs(K'V4{ I +
h(K,L,5,0\ where 2 = 1tBdK, K = E - e@r!4), f ois
Maxwellian, and also introduce the even part h'and the

odd part ft- of the distribution function /, with respect to

the sign of the parallel velocity all, and define the

functions

r_rc, -or h=(8) + h=eql h'(81 + l1-rlt 
13)/r"(r')= --- 

. h--la)=-- -T-

the linearized Fokker-Planck equation reduces to

Ch*' + Hh-" + Dh*" =0, Ch-' + Hh*' + Dh-' =S-',
(4)

Ch*" + Hh-" + Dh*" = S*", Cft-" + Hh'" + Dh-" =0,

where

^+ 1 dJ,,Otn;n ^ ev
s. =i ;#"-a;: s = r', c =vtutf,^M ffi.

, ={-r: dQ.H =fotrau., =r'f"(:l;)# ,' ='!;
Only the pitch angle scattering term, which is dominant

particularly, in the low collisionality region, is retained

in the collision operator. Let us discuss the problems

associated with the boundary layer and the resonance

involved in the solution of Eq. (4). The following two

boundary layers appear in the low collisionality limit:
(Bl) 4 - 6, < h < h", (BZ) L- - 6, < h < L* + d2 in the

case of o)a = o, (83) L, - 6t < L < 1, - 6r, and (B4) 1,. -
A < L < L + 6in the case of a4*0, where' fi = v las,

62= ^[ilo)8, $: vlaB, L"(8) = BJB^ ,1,- = min ).,, and

on = Lvt/R. Here, we note that the boundary layer exists

only on the passing particle side (2 < 4(d)) for a6 = 9,

but it appears in both the passing and trapped regions

for as + 0. When ro6 becomes large, the so-called

helical resonance appears, provided that the resonance

condition o)r,= an is satisfied'

As for the numerical scheme to solve Eq. (4)

effectively, the function in the d direction is expressed

in terms of a Fourier expansion, and the meshes with

variable distances are concentrated in the region of
boundary layers. So, the structure of the solution near

boundary layer can be well analyzed. A symmetric band

matrix solver is used in the numerical calculations.

Then, the computation time is dramatically reduced

particularly in the low collisionality region. After

solving Eq. (4), the transport coefficients are represented

by the following relations:

D I n (S-',h'), D n n (5",h*'),(a,b1 = | abil', (5)

where S and h aregiven by the notations O"nn"A U"to*

Eq. (4) and the solutions of Eq. (4). We note that D11

and D13 defined in Eq. (5) correspond to the particle

transport coefficient and the bootstrap current'

respectively.

3. Numerical Results
In the following discussions, we used a realistic

magnetic field, which is calculated, by using the MAGN

code for the LHD parameters. It should be noted that the

present results reproduce the results based on the DKES

code and the analysis is also applicable to some specific

resonance cases in which the analysis based on the

DKES code is inappropriate.

Typical results for the collisionality dependence of

the diffusion coefficient (Drr) and the bootstrap current

(Dr:) in the case of the LHD parameters are shown in

Fig. l(a) and Fig. 1(b), respectively, for different values

of the normalized radial electric field, -Ra4lv. The

parameters used in the calculations are rla = 0.5, Bo = 3

T, L = 0.48, e, = 0.074, and €7, = 0.054. Figure 1(a) shows

that, in the llv collisionality region the diffusion

coefficient drastically decreases as the electric field

increases. Figure l(b) indicates that the bootstrap current

does not monotonically increase as the collision
frequency decreases and that it is very sensitive to the

magnitude of the electric field. It turns out from Fig.

1(b) that as the collision frequency decreases, the

bootstrap current increases in the banana region and
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seems to saturate at some collision frequency (at the
transition), which depends on the magnitude of the
electric field. Then, it decreases with decreasing
collision frequency and seems to be independent of both
the collisionality and the electric field in the very low
collisionality region such as Rvla < l0-s. This behavior
of the bootstrap current has been pointed out first by
Shaing et al. [9] and similar results were reported in [7].
In the present research, however, the asymptotic
behavior of the bootstrap current has been studied in
further low collisionality region than it was in [7]. The
results show more clearly that the bootstrap current is
rather independent of the collisionality and is insensitive
to the electric field in such a parameter region. We next

o.@ol o.o0l

RV/V

3

Fig. 1 Collisionality dependence of the diffusion
coefficient (4r),11(a)l and the bootstrap current
(4') t1(b)l for several values of the electric field.

consider the influence of the resonance on the transport.
The distribution function may be deformed by the
resonance between the bouncing and the electric rotation
when the resonance condition, tvxlR.= a6 is satisfied.
The coefficient D11 versus Rv/a are shown in Fig. 2 for
several values of Rarylu. Here, the case with Raslu =
lO-rcorresponds to the case of the resonance. Although
the diffusion coefficients are reduced due to the electric
field as shown in Fig. l(a), it grows again once the
resonance appears. With further increase of the electric
field, however, the resonance may vanish for a specific
level of the electric field, where .1, = 0, and
consequently, the sudden changes of the transport
coefficients are observed. Typical 2-D constant contours
in the ,1"- rlplane for the even (h,) and add (h-) parts of
the distribution function are plotted in Fig. 3 for three
typical values of the normalized electric field
parameters. The solid and dotted lines in the contour
plot correspond to the positive and negative parts ofthe
distribution function, respectively. As was shown in Fig.
3, the resonance region is characterized by a pair of the
positive and negative closed contours and moves to a
smaller ,1, region as the value of RotBla increases, and it
comes near the boundary (/" = 0) provided RaBla is
larger than the critical value. Although the sudden
changes of the transport coefficient mentioned above
seems to come from the lack of the resolution in the
region of L = 0, this problem can be studied more
clearly by the mesh accumulation to that resion.

o.o0or o.oot o.o1 o.l
RV/V

Fig. 2 Collisionality dependence of the diffusion
coefficient (4,) for several values of the electric
fiefd. Here, the case with RcoE lv = 1O1 corresponds
to the case of the resonance. parameters used
here are the same as Fig. 1.
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4. Summary and Discussions
The numerical code solving the bounce averaged

Fokker-Planck equation has been developed in the two

dimensional space (1,r9). The results obtained by the

DKES code are reproduced by this code with less

computation time. The 2-D contour plot of the

distribution function revealed the importance of both the

boundary layer effect and resonance effect on the results

of the transports such as the bootstrap currents, as

1. IOE+OO

- I . ltE-ol

shown in Fig. l(b). A better understanding of the

influence of the electric field on the fine structure for

the distribution function, the remarkable reduction of the

diffusion coefficient, the degradation of the transport

coefficient due to the resonance, and the novel behavior

of the bootstrap current are obtained. However, more

clear understandings of these phenomena await further

investigations of the boundary layer contributions.
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Fig. 3 Typical 2-D constant contours in the i - d plane for the even (h.) and odd (h-) parts of the distribution function are

plotted for three typical values of the normalized electric field parameter.
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