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Soliton Formation in Spiral Galaxies
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Abstract
A galactic disk, consisting ofcollisionless stars, can be treated as a plasma under the influence ofthe

collective gravitational force. In the present work, a comparison between the dynamics of galaxies and

conventional plasmas has been carried out. We invoked the analogy between Kelvin-Helmholtz
instability and the instability of a differentially rotating fluid due to two-dimensional perturbations, as

well as the one between Rayleigh-Taylor instability in stratified fluids and the instability determined by

Rayleigh's criterion for rotating flows. By linear analysis, we have a classification of the parameter

space. In the regime of stable density waves, we have studied the nonlinear evolution of the density
perturbation in the spiral structure of galaxies applying reductive perturbation method to the fluid
dynamical description of galaxies. We compare two different forms of soliton-like waves described either

by KdV or NLS equations.
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1. Introduction
The mechanism of formation of the spiral patterns

observed in most galaxies has not yet been fully under-

stood. Since a galaxy is a star-gas mixture sup-ported by
gravitation, pressure, rotation and magnetic field, col-
lective phenomena and structures created there are

rather rich and complex []. The aim of this paper is to

highlight analogies among galaxies, plasmas and neutral

fluids in linear and nonlinear descriptions of waves

excited in ambient rotations (or shear flows). In Section

2, various instabilities that occur in different model of
galaxies are discussed by comparing some of them with

similar phenomena occurring in stratified fluids or plas-

mas. In order to study nonlinear dynamics of galaxies,

we start from the linear theory, and summarize the

analogy between stability criteria for water-waves dy-

namics and dynamics of galaxies. Some results of linear

stability analysis will be used to define the parameter
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regime for the nonlinear model discussed in the latest

part of this paper. In Section 3, one-dimensional motion

in the presence of rotation and pressure is considered in
the nonlinear regime, and a KdV-type soliton solution is

derived. This solution is compared with that of a

pressureless, and rotationless model [2,3].

2. Stability Analysis
2.1 Stability Griterion for Galaxies

There are some different casuals of instabilities in
galactic systems. Jean's criterion that gives the neces-

sary and sufficient condition for the stability of a system

of gravity and pressure (no rotation) [4] is

k2c2>4nGp, (1)

where k is the total wave number, c is the sound veloci-
ty, G is gravitational constant and p is the mass density.
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For a uniformly rotating infinite-length cylindrical
column, Chandrasekhar proved that Jean's criterion is
unaffected by rotation, except for modes with wave-
numbers perpendicular to the axis of rotation [5]. For
these modes Chandrasekhar's criterion is

k2c2>4nGp-4Q2, (2)

where C) denotes angular velocity ofrotation. For waves
propagating in the direction which is perpendicular to
the rotation axis, there is no gravitational instabilities
if ()2 > rGp.In any other direction of the wave vector,
gravitational instability occurs if Jean's criterion is sat-

isfied. Finite thickness of the disk is responsible for the

appearance of other critical wavelength since gravita-
tional potential in that case is proportional to (4nGp)l(k2

+ T-1 l\, where Z is the thickness. In the limit of T -+

-, Chandrasekhar's criterion is restored. For differential
rotation, linearizing equations and assuming plane-wave

type variation as fi = fr(r)ei(k'+^v-ot), we obtain the
dispersion relation [6]

(a - m{l)2 = K2 + k2 c2 - 2nGPk , (3)

where ar - mCl is the Doppler shifted frequency and r
is epicyclic frequency due to differential rotation 12 =
2AQO + r(dQ/dr)). For a pressureless medium, c = 0,
(a - m{l)z, become negative if 12 < 0, so the disk is
unstable. This is the rotational instability due to ex-
ponentially growing departure of particles from circular
orbits, and the growing rate is given by r. The criterion
for the rotation instability is
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(4)

following form

-2 ,dv.' v.' ,.(a-imdlf 9 q ' , -D' dr m2+k2r2'dr r "

- 1212e(r)
-((a-imC)1'+ ^

m'+ k'r2

+ im(ot -imdt), 
-L 

tNPll?)) v,'= 0 (6)or m'+ k'rt
together with boundary condition v,' = O, r = 11, r = 12.

dVldr+Vlr is basic vorticity and <D(r) = *# O,

dr(r2d2)2 is Rayleigh's discriminant [7] and corres-
ponds to 12 in galaxy's dispersion relation, Q(r) = yz1

13. Rayleigh's criterion is the necessary and sufficient
condition for stability for axisymmetric perturbations,
but is invalid for non-axisymmetric ones. Setting dl0E=
O and, m = 0, we obtain stability equation

# . ff rlt - r', : - #o(r) v,' = o .

Eigenvalues kzlot2 are all negative if @(r) > 0 allover
the given interval 11 1r 1r2. On the other hand, treating
the two-dimensional perturbations, assuming that 0llz =
0 or ft = 0, stability equation becomes

61ta t d *1r_ *' ,r,'dr'dr r' 12 "

-+ +,. # * 2d2))v,'=o ' (8)

with boundary condition vi = 0, r = rt; r - 12. Now, we
can speak only about necessary condition for instability,

9r'*+2o))<0, (9)dr dr

which means that gradient of basic vorticity has to
change sign at least once in given domain. This result is
closely related with Kelvin-Helmoltz instability. In order
to compare last result with Kelvin-Helmoltz instability,
we introduce the stream function 14 for two-dimensional
perturbations and search for solutions in the form
V'(r,E,t) - rlr(r)eot+i-o, where the amplitudes of the
perturbed velocities are v,'(r) = imlr rtr(r), vi/) =
-U/(r). Stability equation is the same as (8). Multiplying
this equation by complex conjugate 14* and integrating
in the given domain, we obtain

.. rd trd+2f)),,^ I'z dr dr _ ' lVl, ar=0, (10)
"'t la+imAl

which gives the necessary condition for instability.

a)

and finally

dQas o. l@1.29dr ldrl r

a(rtcr)'.o.
dr'

This criterion corresponds to Rayleigh's criterion for
instability for rotational flow, and has analogy with
stratified fluid at rest or with constant basic flow.

2.2 Stability Griterion for Rotational Flow
Governing equations for rotational flow are

* * fu' V)v+ 2(Ctxy; - Cl'r = -Y p,
ot

V'v =0. (s)

After linearization and applying normal mode analysis
assuming that all perturbations has the form as /' -
f'(r)si(^q+rzl-t'. r,o = 0, vEo = V = {2(r)lr, vzo = Q

describes equilibrium. Equation for stability appears in
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2.3 Stability Criterion for Parallel Flow
Governing equations for parallel flow are the same

as for rotational flow, but the basic state is given as I =
U(z)e,, P = const, p = po. Introducing stream function V/

again, for two-dimensional perturbations, we search for
solution in the form ty'(x,z,t) = yt(7)et&'-at). The

imaginary part of the stability equation gives the nec-

essary condition for instability as

coordinates, the governing equations are written as

d! *t ? trov.)+ I 3rpr-)=o
dt rdr' rdQ v'

d, r, .. dv, , v q dv, , v,v,
a, - " d, -T dq-T

=- l4- -l -d rP:r- rdr rdr'P'
r dd aA, t d20, "^, (fi_t ).r | --:==4fGp
r dr '' dr' r, a(f

P=KPT

Here we assume r, K r<p and C) = const. We consider a

density wave that propagates in the g direction and

approximate spatial derivative as :+=+ Then the

previous set of equations reduces to ' o? dx

# -* (pv)=o

(1 1)

For Kelvin-Helmholtz instability, U(z) * 0, Eq. (11)

shows that background flow has to change sign

somewhere in the given domain, which corresponds to

condition for two-dimensional perturbations in rotational

flow. For stratified fluid with basic state defined as U(e)

= const, p=Fk),p = po- S J,l,' O{z')az', where g is the

acceleration of gravity, Rayleigh's stability equation is

? I,',,' 
V+lvra,=o

3ft.-k')v+N'v=oK dz'

**,,*.+*-+=-y-*,!o,

?t*uP =- Kypv'zP-+
dt dx ox ox

ara^,
_-_P_V-dx'

(13)

(r4)(r2)

with boundary condition ktlr = 0, z = Zr, z - 22. Insta-

bility in this case is called Rayleigh-Taylor instability.

Rayleigh proved that necessary and sufficient condition

for stability is N2 > 0 everywhere in the given domain.

This condition corresponds to the Rayleigh's criterion
for axisymmetric perturbations in rotation flow, and to

the condition in the case of the galaxies, so N2 =

-g o4:o' corresponds to the Rayleigh's discriminant
(D1r;iand to the epicyclic frequency 12. Physically, it
means that for rotational flow (as well as for galaxies),

whenever the z component of angular momentum

decrease outward, instability occurs. This property is

analogous to the instability that appears in stratified

fluid whenever lighter fluid is locally below heavier

fluid.

3. Nonlinear Analysis for One-dimensional
Motion with Pressure and Rotation

3.1 Fluid Description of Galaxy
In Section 2, we bave summarized dispersion

relations of linearized fluid models for various sources

of instabilities. In this section, we study nonlinear waves

in a gravitational rotating system, with two dimensional

cylindrical geometry (corresponding to Sec. 2.1). We

consider a fluid in which fluid elements interact only

through the self-gravity and pressure. In the cylindrical

where v is the x component of the velocity and all
variables are normalized as: p = PoP, p = 2rGrtRzF,
v = (2ltcpi'''Ri, Q = 2nGpoRzQ, x = Rl',[2x, t =
(ZnGps)at2t. We have supposed politropic fluid and that

the variations of p and p take place adiabatically:

*Vr=V(rypvt) for y+t orP y-l'

lyr=vfY\pY t) tor y+1,
P y-l'

bOo=V(r(logp) for y-- | . (1s)

Linearizing the above system and assuming that all
quantities are proportional to ei(at-kx), we obtain the

dispersion relation as

(o-k)'k'+ k2 -Tko -2(.'D-k)k=0. (16)

In the limit k> aBq. (16) coincides with the dispersion

relation obtained in [2], for a rotationless case:

af2=Kykz-1,
where

ol=ro-k, K:|. (I7)

Waves with k < (KT)t'' have an imaginary frequency

which means the exponential growth. Solving the
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tt_dQ)_ l rt+v- - -- "\r:d/( k
+Kyk )

(-2k+4Kyk3)+r (1s)

dispersion relation (16) with respect to a/ and differ-
entiating it with respect to ft, we obtain group velocity
V:

form [9]

QG,r)- Q-+ asech2 l(€ -vr)<.*=>il, Q3).r2h' -

where @- denotes the boundary value of Q(t'0) at (€ -
Vr) -+ *o, a is amplitude of the wave relative to the

constant solution fu at infinity, and b = 27 l8(l - 4Ky)'z.

It is clear that the KdV equation is obtained where

there is no carrier wave, i.e. m = 0. On the other hand, a

solution for rotationless case appears as a solution of
NLS equation [2,3], where carrier wave is included. The

first situation corresponds to a solution for the ion-
acoustic wave in the plasma theory. Poisson's equation

in this case, has the form ff= ni - fl, = ni - e0, where

the last term in the right-hand side is not a constant.

However, the second situation corresponds" to the
Langmiur wave, because Poisson's equation is ffi= n. -
ni, and last term, ni is a constant. Main difference in
analogy between the ion-acoustic wave and the wave for
this one-dimensional model for galaxies, with pressure

and uniform rotation, is the form of non-constant last

term in Poisson's equation, and therefore its influence in
appearance in the equation of motion. Note that in
galaxy case this term is v2 and its origin comes from the

uniform rotation. This term produces essential coupling
between higher order harmonics and introducing of
carrier wave can cause unnecessary coupling of
harmonics in variables expansion.

On the other hand, for galaxy model without
rotational effects, Poisson's equation has the form
similar to the Langmiur wave, with the constant last

term. In this case, introducing the carrier wave is
necessary to produce coupling, since there is no term

that is involved in the equation of motion.

4. Goncluding Remarks
We have investigated the linear stability of dif-

ferent models of galaxies and compared different types

of instabilities that can occur in such models. Some

analogues are found between galaxy-type instability and

instabilities that are well established in the fluid theory

such are Rayleigh's criterion for rotational flow, and

Rayleigh-Taylor instability for stratified fluid at rest or

with constant basic flow. In Section 3, we generalized

the well-known Chandrasekar criterion for the linear
waves propagating in the direction perpendicular to the

Cl, and obtained a KdV equation that gives soliton
solutions.

Comparison with plasma waves, and also with NLS
type of solution for rotationless model has been made.

,1T-
L
K fl\f r-k2 + Kyka

Taking the limit ft -+ 0, which means that we consider ft

< rrl, only the branch with negative sign make sense, so

V = 312, which corresponds to the same problem but
pressureless.

3.2 One-dimensional Soliton
In the previous Sec. 3.1, we have modified

Chandrasekar criterion (discussed in Sec. 2.1, Eq. (2))

for the waves propagating in the perpendicular direction.

We consider only the waves that are linearly stable, i.e.

0 < ft < (KT)t'', and apply the reductive perturbation

method [8] as:

I
(= ei 1x -V,) ,

3
T=82t,

p=r +i i s,p{,'*)((,r)E^
n=l m-6

v= I +
- 

n=l m=-*

0=> > s"Qa'^t((,t)E^ Q0)
n=l m=-*

where t is a small parameter, and E = ei(at-kx) with k
belonging to the linearly stable domain.

From the lowest order set of equations is obtained:

y(1,0) - 
|p,',0, ,

O(t,o)- 
l-lKT 

Oo.ot,

V =3.
2

From the order of e5l2, a KdV type equation is obtained

as following:

? 
4rr.o, + - 1_ d(r.o)-rL O{r.o)dr ' l-4Ky' d€

_r-:KT P:;O(,,o,_ o eZ)8 a6'

This type of nonlinear equation has a solution in the

(le)

QI)

+Kyk4
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In the last one, NLS equation [2] changes type from
focusing to defocusing through the critical wavenumber

k" = ''lT(y * 2y4T (y * D > (y)-tt2 . This range is out of
our consideration, since it is a linearly unstable wave-

number. Here, carrier wave is responsible for essential

coupling. However, for the study of galactic structures,

thin-disk geometry plays an essential role (Sec. 2.1, Eq.
(3) and Sec.2.2, Eq. (9)) through new approximation for
Poisson's equation. An NLS type equation can be

derived [10] for linearly stable waves satisfying the

dispersion relation (3), which has dark soliton solutions

[11]. We will discuss elsewhere other type of nonlinear

waves in a thin-disk geometry.
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