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Abstract
The radial eigen equation of the collisionless trapped ion mode (CTIM) is re-derived by directly

retaining the effect of finite banana orbit width. Local and non-local stability analyses and the
dependence of radial mode structure on both pressure and 4 profiles are presented. It is found that the
radial structure of CTIM is dominated by the competition between the non-adiabatic trapped ion and
passing ion dynamics. The discussion related to the results from recent toroidal particle simulations and

the two-dimensional eigenmode code is given.
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1, Introduction
Recent toroidal particle simulations on the ion

temperature gradient mode [ITG or 4i(- d ln Tild ln n)l
with weak or reversed magnetic shear have shown some

interesting mode structures [1-3]. One is the repetition
of formation and destruction of a discontinuous global

mode near the minimum-4 surface in reversed shear
plasmas, which has been testified to work efficiently as

an internal transport barrier (ITB) t1,21. The candidates

for its formation may include the non-resonant mode [1]
and the sheared slab mode with separate structures near

the minimum-4 surface [4]. Its destruction seems to
exhibit some characters of the collisionless trapped ion
mode (CTIM). Another is a typically global ballooning
structure in the case with a linear q profile [3].
However, it is observed that the radial mode width
shrinks as the magnetic shear 3 tends to be weak. This
seems to be not consistent with the standard ballooning
mode analysis, which shows the global mode width Ar
e j-rtz with moderate or strons shear. Further Fourier
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mode decomposition shows that the mode resonant
surface of each poloidal harmonic, which the
eigenfunction is localized in its vicinity, deviates from
the rational surface with ft', = 0 and draws toward the

surface with maximum-Vp. This also recalls CTIM
which is insensitive to t}re magnetic shear and is excited
near the maximum-Vp surface [5]. Motivated by these

considerations, the radial structure of CTIM and the
parametric dependence are re-investigated to further
understand the global mode structure and the relevant
anomalous ion transport observed in the toroidal particle

simulations.

2. Radial Eigen Mode Equataon of CTIM
In tokamak plasmas, the trapped ion mode is a

typical low-frequency and long wavelength collective
mode with 6o;< a < oui [6]. Here drpi =2hcTileBoR
and @5i = "lLevr;/qR with e = a/R. T]ne electrostatic
CTIM is described by the quasineutrality condition and
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# * h"e, o)+ i* .v, h,oe, o)=s ,

the drift kinetic equation for the non-adiabatic part, \,
of perturbed distribution function due to the banana

orbit width paiG qpillE) being larger than ion Larmor

radius p1. Usually, ft; for trapped ions can be solved step

by step through ordering a small quantity e = alaa1
However, the radial excursion of trapped ions, namely

the finite banana width effect, is retained here in the

lowest order equation, i.e.,

Here ? = TJT., a^rj = (lcu cTll qBsl;ll + nj(v2 lv2rj - 3/2))

with Zn = (d ln nldr)-t, F1a is Maxwellian distribution
function, and (...) indicates usual bounce-averaging.

The passing ion response d'" is the same as that in
Ref.6, which includes the dependence on the magnetic

shear, i.e., 4 profile. Eq.(4) is different from its usual

counterpart [9] obtained by employing the approximate

expansion (QQ, 0)) = QQd + pzord2Qjildro2, it includes

the effect of all different banana orbit width on the

radial structure.

3. Stability Analysis of CTIM
Local analysis: generally, the local approximation

(ignoring the radial derivative) is advisable to predict

the existence of the instability. Fig.1(a) shows that there

exist two pairs of unstable branches of local pure CTIM
(with {6 = 0) for steeper pressure gradient, i.e., smaller

eo[= (d ln pldirln]. Note that all branches become

aperiodic (real frequencies are zero) in region II, and

branches labeled by 2 and 4 degenerate into one. It is
identified that the branch labeled by 3 corresponds to

the residual trapped ion mode I l]. It is further shown

that this branch can remain in plasmas with L, -t - and

d"r = 0, and it is hardly stabilized by non-adiabatic
passing ion dynamics.

Non-local analysis: for simplicity, assuming a

parabolic-type pressure gradient model q = ers(l + x2l

L?) near the maximum-Vp surface r - ro with x = (r -
rs)lpi, the thick dashed and solid curves in Fig.l(b)
illustrate the typical non-local growth rates and real

frequencies versus €oo(lower horizontal axis)
corresponding to the local branches. It can verify the

local results, even including the degeneration of
branches labeled by 2 and 4. For a more realistic model

of pressure profile n. - Ti = Z" = 1 + 6.511l + eD(p-0's)l

with p = rla and constant D for adjusting the pressure

profile, typically for profiles of JT-60U, the local results

are further testified by the thin curves corresponding to

the thick ones as shown in Fig.l(b).

4. Radial Structure of CTIM
For pure CTIM, the eigen mode possesses a wider

slablike radial structure near the maximum-Vp surface

and it is almost independent of the magnetic shear, i.e.,
q profile. However, when the non-adiabatic passing ion

response is included, the Landau damping near the

rational surface can not only play a stabilizing role to
CTIM, but also change the mode structure. Assuming a

nearly flat 4 profile such as 4 = 0.9 oedp similar to that

in the toroidal particle simulations, and employing the

(1)

with vp. = -(sin0/RCl")(v112 + vfr). Here {lci= eBolmic.

Using the relation dvr{e1tae = -QtBstlml)sin0/v11(0) with

F = v2Ll2Bo for trapped particles [7], it yields

I ,r

h,o4.o)=h,o(r)r*rl'o'?-:'(t> [r . { 
,|1, 

Q)'.,0\' r -, ..,u\. ,'.^r 
[ 

€e.i \2 ,rr)],

after employing the transformation Y , -+ -ik,. Note that

the exponential term describes in fact the effect of the

finite banana orbit width due to p1. * u11ltC)"1. It can be

expanded in small argument. The similar zero order

solution has also been given in Ref.8. Guided by the

fully 2-Dimensional (poloidal and radial) eigenmode

analysis for CTIM [5,9] which shows the full 2-D
results are in qualitative agreement with those from the

1-D radial studies for weak magnetic shear case, ft16(r)

can be obtained from the next order equation under

using the bounce-averaging approximation as usual [0].
Employing the usual expressions for the trapped
electron and passing ion responses [6] and using the

inverse transformation -ik, -+ dldr, the radial eigen

equation of CTIM can be obtained from the quasi-

neutrality condition, i.e.,

,2

Pl,A. -s " 0dr'
t^-t

.l-J4+d,,+u;.*j5ld=0, (4)
| 2^/2e " L 2^/2e ]

with

A, =1, (+.rt)'
FM

,3)
l)
+

')('-q",;;lt n
a',(+(,i<e>)r

,-lo, (coso)t

a'r(ro-(o.,,))r.
6ir=I

, -(0, (cose)rn o",) (r',t z * ri)
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Fig. 1 Normalized real frequencies (solid) and growth
rates (dashed) of CTIM by drp" versus pressure
gradient parameter for local (a) and non-local (b)

cases. ?- 1,4i= e.= 1, e=0.325, q= 1, Lp=2OOpi.
Note that two sets of curves from two pressure
profile models are included in case (b) against the
local case (a), the thick curves correspond to
lower horizontal axis and the thin curves are to
the upper one.

realistic model of pressure profile used in Fig.l(b) with
different constant D, Fig.2 displays the dependence of
the resonant surfaces of CTIM on both pressure and 4
profiles. For a flatter pressure profile (smaller D case),

the trapped ion dynamics is relatively weaker, the
resonant surface of each rn-harmonic is almost located

near the corresponding rational surface. The mode has

usual character of the slab 41 mode except for the wider
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Fig. 2 Mode structure of different m-harmonics for
typical parameters of JT-60U. t= 1, e=0.325, R=
300 cm, a = 100 cm, pi = 0.3 cm. (a): D = 10, a =
0.00095, o=7.7', (b): D = 20, a= 0.003, o= 6.5.

radial structure. In addition, it can be seen the high-n
harmonics possess narrower radial width due to the

localization of magnetic shear. However, as the pressure

gradient becomes steeper, the trapped ion dynamics

tends to be stronger. The resonant surface of each m-

harmonic deviates from the corresponding rational
surface and draws toward the maximum-Vp surface,

except for the harmonic m = 20 due to its rational
surface coinciding with the maximum-Vp surface. This
shows that the radial structure of CTIM is dominated by

the competition between the non-adiabatic trapped ion
and passing ion dynamics. The former is governed by
the pressure profile and magnetic trapping, the latter
strongly depends on 4 profile. This picture can be
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Fig. 3 Dependence of the resonant surfaces of /.n-

harmonics on the pressure profile for the case
with a linear q profile and without trapped
electron response. The solid curves correspond to
m = 10,the dashed ones to m = 11. t = 1, e =
0.325, R = 300 cm, a = 1QO cm, p, = 0.3 cm, Ln -) -.

further illustrated clearly by Fig.3, where only two
rational surfaces are included due to the flatly linear 4
profile q = 0.925 + 0.25p similar to that in the
simulation [3].

5. Summary and Discussion
In this work, a radial eigen equation of CTIM

including the effect of all different banana orbit widths

is re-derived. Local and non-local stability analyses for a

steeper pressure profile show that the more important
branch of CTIM is the residual trapped ion mode. Its
radial structure is dominated by the competition between

the non-adiabatic trapped ion and passing ion dynamics,

namely depends on both pressure and 4 profiles.

This one-dimensional picture for the radial
structure of CTIM is helpful to understand the global
mode structures observed in the toroidal particle
simulations. In a plasma with negative shear [1,2], after
the formation of discontinuous global structure near the

minimum-4 surface, the heat is isolated inside, the

temperature profile tends to be steeper, CTIM may be

excited and the discontinuity disappears. Soon
afterwards, the heat is ejected through the global mode

and the temperature relaxes, CTIM may become

marginally stabilizing, finally the discontinuity recovers.

For a plasma with linear 4-profile [3], as 4 profile

becomes flatter, the trapped ion dynamics relatively
tends to be stronger than the passing ion dynamics.
Hence, the global structure may be dominated by the

CTIM, and the global mode width could shrink due to
all m-harmonics drawing toward the maximum-Vp
surface. Furthermore, this one-dimensional picture can

also explain the mode structure from 2-D eigenmode
code as shown in Fig.l of Ref.5. For the given
equilibrium pressure and 4 profiles, the magnetic
trapping effect is stronger in the unfavorable curvature
region (0 = 0), the radial locations of all n-harmonics
are dominated by the trapped ion dynamics. All m-

harmonics draw toward the maximum-Vp surface to
form an extended radial structure. On the other hand.

near 0 = z surface, the magnetic trapping is almost
marginal and the passing ion dynamic is dominant.
Landau damping leads to the localization of all m-
harmonics near the corresponding rational surfaces
which is almost independent of the variation of the

equilibrium pressure gradient.

Acknowledgments
One of authors (Li) would like to thank Dr. G.

Rewoldt and Prof. W.X. Qu for their discussions. This
work was supported by Science and Technology Agency

of Japan. It was also supported in part by National
Natural Science Foundation of China under grant
No.19705004 and National Nuclear Science Foundation

of China.

References
tll Y. Kishimoto et al.,Plasma Phys. Control. Fusion

40, 4663 (1998).

tzl Y . Kishimoto et a/., Nucl. Fusion 40, 667 (2000).

t3l Y. Kishimoto et al., in Fusion Energy 1996 (IAEA,
Montreal) 2, 581 (1997).

[4] Jiquan Li et al., Plasma Phys. Control. Fusion 42,

443 (2000.

t5l W.M. Tang et a/., Phys. Fluids B 5,2451 (1993).

[6] W.M. Tang, Nucl. Fusion 18, 1089 (1978).

[7] Jiquan Li et al., Phys. Plasmas 3,3337 (1996).

t8l M.N. Rosenbluth et al., Phys. Rev. Lett. E0,724
(1998).

t9l R. Marchand et al.,Phys. Fluids 23, I164 (1980).

t10l X.Q. Xt et al., Phys. Fluids B 3, 1807 (1991).

[ 1] W.M. Tang et a/., Phys. Fluids 20, 430 (1977).

1.2

1
v)

E 0.8

h o.o
|-r

'E o.+

€, o.z
A

0

0.80.60.40.2

279




