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Abstract
A mathematically and physically sound three-degree-of-freedom dynamical model that emulates

low- to high-confinement mode (L-H) transitions is proposed on the basis of a singularity theory critique
of earlier fragile models. It is found to contain two codimension 2 organizing centers and two Hopf
bifurcations, which underlie dynamical behavior that has been observed but not mirrored in previous
models.
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1. Introduction
A unified, low-dimensional description of the

dynamics of L-H transitions would be a valuable aid for
the control of confinement in fusion plasmas. In this
work we report significant progress toward this goal by
developing the singularity theory approach this problem
that was introduced in [1].

The title of this paper refers to the philosophy of
singularity theory [2] as applied to dynamical models:

that parameter space should be smooth and continuous,
and parameters should be independent and not fewer
than the codimension of the system. (See Refs. l2l and

[3] for explanations of the mathematical terminologies
and operations in this paper.)

Since 1988 [4] many efforts have been made to
derive unified low-dimensional dynamical models that
emulate L-H transitions and/or associated oscillatory
behavior [5-21]. However, as was shown in [1], the

models often founder at singularities. Consequently,
much of the discussion in the literature concerning their
bifurcation properties is qualitatively inadequate. For
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example, the model in Ref. [13] is claimed to reflect a

second-order phase transition, but it is easily shown [1]
that a perturbation of arbitrary size dissolves the
putative transition point. A similar problem also besets

the DLCT (Diamond-Liang-Carerras-Terry) model [8],
which we examine in this paper. The notion that the
L-H transition is a second-order phase transition has

entered the literature [22,23] simply because these and

similar models neglected perturbing terms that
conespond to some essential physics, such as fulfilling a

symmetry-breaking imperative. We say that such models

are fragile, and cannot predict the behaviour of the

system they purport to represent, because a perturbation

changes profoundly the character of the solutions.
Our analysis of the bifurcation structure of the

DLCT model finds that it needs two major operations to
give it mathematical consistency: (1) a degenerate
singularity is identified and unfolded, (2) the dynamical
state space is expanded to three dimensions. We then
analyse the enhanced model obtained from these
operations, the BD (Ball-Dewar) model, and find it
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consistent with many known features of I-H transitions.

2. Bifurcation Structure of the DLCT Model
This paradigmatic 2-dimensional model [8] couples

the turbulence and flow shear dynamics:

d$=4g- nFN-BN2 (1)dt '-'
dF _,
O, -,tFN - 1tF. (2)

N is the mean square level of density fluctuations, F is

the square of the averaged E x B poloidal flow shear.

The fluctuations grow at rate yN and are damped

quadratically atrate BN2. The exchange coefficient a is
related to the Reynolds stress, and the damping rate pF
is due to viscosity. (Minor changes to the original
notation have been made.)

Following the procedure in [1] we set the time

derivatives in eqs. I and 2 to zero, select the state

variable and bifurcation parameter to form the

biturcation equation g =X(F,D = (Fd(y- Fa))lB- F1t,

and identify the singular points where 8 = 8r = 0. We

find the unique physical singularity (F,T)r = (0, Fpla),
which satisfies the additional definine conditions for a

transcritical bifurcation:

8y= O, Trp * 0, det d'8 <0, (3)

where d2g is the Hessian matrix. The bifurcation
diagram showing the transcritical point I is plotted in
Fig. 1a. (In these diagrams stable solutions are plotted

with continuous lines and unstable solutions with dashed

lines.)

The perturbation g unfolds f but introduces I. a
= 1, B = O.77, 1t= 1. a. e = O, b. E- 0.05, c. e = O.5,

d. g = 1. The region F < 0 is unphysical but is
included to make the nature of f and 75 clearer.

However, Fig. la is incomplete because of this
generic property of the transcritical bifurcation: it is
non-persistent to perturbation. To break the symmetry

under u' --> -lf, where u'represents the poloidal shear

flow, we introduce the perturbation term gFll2. lNote
that F * I u'l '.) Thus, the modified DLCT model

consists of eq. I and

ff= anN - PF * qF''' (4)

The perturbation term represents an inevitable source of
shear flow. It can arise from non-ambipolar ion orbit
losses that produce a driving torque, which can be quite

larye l24l.In fact some early models relied exclusively

on a nonlinear ion orbit loss rate [4,5]. However, this

alone cannot explai.n turbulence suppression. Here we

treat the term as part of a more complete dynamical
picture and assign it a simple form in the small.

Bifurcation diagrams for increasing values of g are

plotted in Fig. lb-d. We see that solution of one

problem causes another: the perturbation does indeed

unfold Z, but it releases another degenerate singularity
2". Before proceeding with a treatment of Z" we

highlight three important issues:

1. Since rp is inevitably nonzero in experiments, no

distinct transition occurs neat T, second-order or
otherwise, contrary to what is stated in [8].
2. Both N and F change continuously with 7in the same

direction. Figure 2, where N is the state variable, should

be compared with Fig. lc. The model therefore does not

emulate turbulence stabilization by the shear flow,
contrary to what is stated in [8].
3. To ascertain whether the model can exhibit periodic

dynamics as stated in [8] we look for a pair of purely

0.6

N 0.4

0.2

0

Fig.2 Same as Fig. 1(c) except with N as the state
variable. The region N < 0 is unphysical but is
included to make the nature of I clearer.
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complex conjugate eigenvalues. Applying the defining
conditions for Hopf bifurcations,

I = trJ =0, det J > 0, -1.trY + O.oT
where ,I is the Jacobian matrix, to eqs. I and 4 we find
that det,I < 0 where the equalities are fulfilled, therefore
limit cycles arising from Hopf bifurcations cannot occur.

Although periodic behavior arising from rare and

pathological causes is still possible (if we apply Dulac's
criterion [3] to eqs. 1 and 4), we have not found
oscillatory solutions numerically.

Returning to the new singularity Z'we find that it
is also a transcritical point according to eq. 3. Does the

DLCT model therefore require a second perturbation, to
eq. 1, to unfold 7"? There is no matching physics to
justify this. Another possibility is that Z' is spurious,
created by an unwaranted collapse of a larger state

space. This idea leads to a suggestion that is supported

by the physics, that another variable is intrinsic to a low-
dimensional description of L-H transition dynamics.

3. lntrinsic 3-Dimensional Dynamics of L-H
Transitions

We introduce the the third variable by assuming 7=
7(P), where P is the pressure gradient, as have several

other authors 19,12-14,20). Assuming a simple evolution
of P and y(P) = yP, we obtain an augmented model,

comprised of eq. 4 and

,#=s- yPN

ff=rrN -d,FN -Fw'

(5)

(6)

In eq. 5 4 is the power input and e is a dimensionless
regulatory parameter. For e << I or e >> I the system

can evolve in two timescales:

l. For e _+ 0, €dpldt = 0 and p = qlev.The system

collapses smoothly to eq. 4 and

dN -o -aFN -BrN'.dt
The organizing center is ?, the spurious Z" is non-
existent, and there are no Hopf bifurcations. For e >> I
we define 6= lle, and taking the limit as d-+ 0 we
recover the same form as eq. 1,

,l lrs-jY^ =yP"N-azFN-8N2,OI
( l')

as well as eq. 4, along with the "good" bifurcation Z and

the "bad" bifurcation 2", therefore we suggest this is a

non-physical limit for e,

2. In "fast" time ? = tle and, recasting the system

accordingly, it can be seen that the dynamics becomes

l-dimensional in P in both limits.
The organizing center of the complete problem,

eqs. 4, 5, and 6, is the unique transcritical bifurcation
(F,q,q)r= (0, Bpzla2,0) and Z" is non-existent. We now
have the bones of an improved model, but it still does

not emulate the following characteristics: (a) hysteresis,

since there is no non-trivial point where gpp = 0, (b)

oscillations in H-mode. Evidently we need more

nonlinearity to produce enough competitive interaction.
A likely stimulus to nonlinear behavior is the

viscosity, which in [2] was considered to be the sum of
neoclassical and anomalous or turbulent contributions,

both dependent on the pressure gradient. We shall adopt

this bipartite form and in eq. 4 take

It = lt(P) = Fo"oP" + ll^P^. (8)

Equations 5, 6, 4, and 8 comprise the BD model. The
value of -312 is used for the exponent n, as in ll2l,
which arises from the temperature dependence of the ion
viscosity in a low collisional r6gime derived from
neoclassical theory [25]. In [26] the anomalous viscosity

is given with a P3t2 dependence, but is also influenced

by a P-dependent curvature factor. We have taken m =
512 to simulate these effects. The fidelity of the
qualitative structure of the system to variations in m and
n is discussed briefly in Sec. 5.

4. Bifurcation Structure of the BD Model
The bifurcation problem may be expressed in terms

of F as g = aFN - pF + rpFttz, withry and P given by
the zeros of the RHS of eqs. 6 and 5. It contains two
codimension 2 otganizing centers:

1. The defining conditions for the pitchfork, ;2,

8 = 8r = grr = gq = 0, grrr * O, gPo * O,

give (F, s, P, q)p = (0, 8pll8 pf,l8"yl(77t8a), (73t8ay)l

(Slrils p1f1), 0). Away from the critical vatue of p, Sc

becomes a transcritical I/.
2. Another transcritical point Tu occurs at (F, q, e)r =
(0, PzylB,0).7rand Z'are annihilated at a second

codimension 2 singularity, A, at which the defining
conditions

B = Er = Bs = det d'g = 0, Brr * 0, Brq =t 0

give (F, q, F, e)a = (0, 8(7'16)/ro.oyl(3d,(pn"ollrun)tt6),

3 (1t n"o | 1t *)5 
tB ayl (8(7 st8 

1t ^..)), 
0).

The partially perturbed and fully perturbed
bifurcation diagrams are plotted in Figs 3a. and b.

respectively. There are also two Hopf bifurcations linked

(7)

268



BallR. et al., A Walk in the Parameter Space o L-H Transitions without Stepping on or Through the Cracks

by a branch of stable limit cycles, the amplitude trace of
which is marked by dotted lines. This reflects the

passage through an oscillatory regime with increasing

power that has been observed in experiments as a

feature of type III edge-localised modes 127,281.

However, the quantitative features of type III ELMs,
such as the frequency spectrum, are not reproduced by

this simple model.

Figure 4 illustrates one of the possible effects of
poor turbulence dissipation (i.e. low B). It shows a direct

transition to an oscillatory state, which has been

observed in some experiments 129,301.

Figure 5, to be compared with Fig. 3b, shows that

the BD model does indeed reflect shear flow
suppression of turbulence. The turbulence decreases

dramatically where the jump in the shear flow occurs,

then begins to rise again as increasing power is input to

the system. Near the unfolded Tu, at q - 170, the rise in
turbulence becomes smaller as the turbulent viscositv
damping (second term in eq. 8) takes over.

0.rIn|m
q

Fig.3 Bifurcation diagrams of the BD model. a= 2.4, p=
1, y= 1, e= 1, p^""= 1, U"= 0.05, n = -1.5, m = 2.5.
a. Bifurcation structure of the partially perturbed
system, with I - 0. b. q = 0.05. The unphysical
branches are not plotted in b.

5. Discussion and Conclusions
A dynamical model that emulates much of the

typical behavior around L-H transitions has been

elicited from an earlier flawed model, by considering the

relationship between bifurcation structure and the

physics of the process. Built in to this model are the

following attributes of L-H transitions:

l. Discontinuous, hysteretic transitions.

2. The onset and abatement of oscillatory behavior, via

the two Hopf bifurcations in H-mode, and a transition

directly into oscillatory H-mode.

3. Turbulence suppression by the shear flow.
4. Turbulence generation via non-ambipolar losses.

A maximum in the shear flow followed by a decrease as

the power input increases is also predicted.

In this model it is not necessary to assume any

dependence of the shear flow/turbulence exchange or

q

Fig. 4 Under extreme conditions, when the turbulence
dissipation rate is relatively low. the jump at the
lower limit point can occur directly to an
oscillatory state on the H-mode branch. F = 0.1 ,

other parameters as for Fig. 3.

0.IIniln
q

Fig. 5 Same as Fig. 3b, except with N as state variable.

F
1.50.5

F

0.1
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turbulence dissipation rates on the pressure gradient, as

in ref. [12], to obtain the qualitative structure and

dynamics described here. If we write d= q(P) = aP'
and p = &P) = PP'we find that the structural properties

of the model are insensitive to values of r and s between

--l and -1, hence we have simply chosen r,s = 0.

We also find that the qualitative structure is unchanged

for any m > 0 in the viscosity function of eq. 8, when n
< -1, or for any n < -1, when m > 0. These results will
be presented in more detail elsewhere.
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