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Abstract
Spiral pattern formation in a rotating magnetized plasma is examined. Experimental observations are

presented to show the characteristic features of spiral structure observed in an ECR plasma. To
understand the experimental results, low frequency perturbations in a rotating cylindrical plasma are

described using two-fluid approximation, and the eigenvalue problem is numerically solved to show the
existence of spiral solutions. It is found that dissipative drift wave instability may generate spiral patterns,

which well explain the experimental observations. The universal mechanism of spiral pattem formation is
proposed.
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1. Introduction
Spiral patterns are commonly observed in many

rotating systems such as rotating ordinary fluids, ty-
phoon, galaxy etc. [1]. Recently, spiral patterns have

been observed in magnetized plasmas; Ikehata et al.
observed a persistent spiral structure in a gun produced

plasma rotating at a supersonic speed [2], while Tanaka

et al. observed a stationary spiral pattern in an ECR
plasma [3], whose rotational velocity is in subsonic

region. These experimental results suggest that spiral

structure is a robust entity, and the underlying
mechanism on spiral formation is common among many
different systems.

It is easily understood that self-generation of
coherent structures originates from a certain kind of
instability in the system under consideration. Then, we

expect that the observed spiral is a developed state of
instability grown in a rotating magnetized plasma, and

that eigen-mode analysis under the given boundary
condition should be done as usual. However, describing
spiral pattem seems to be difficult, because the locus of
constant phase points in the polar coordinate system, for

example spiral arms, is a function of radius r and angle

0. The radial mode is dependent on the azimuthal one,

and thus the decomposition into a radial and an azi-
muthal modes seems to be useless. Moreover, the
existence of stationary structure means that zero-
eigenfrequency solution should exist, which imposes a
strong limitation on the solution of unstable modes.

Then, the problems of interest in this study are

whether or not such a particular solution does exist, and

how it makes spiral pattems.

In this paper, we show that dissipative drift wave
instability in a rotating magnetized plasma can produce

a stationary spiral structure in density and potential. In
the first part, the experimental results on spiral structure

observed in an ECR plasma are presented, and it is
shown that the observed spiral is a kind of density
modulation pattern categorized into an Archimedean
spiral. Then, to understand the experimental results, low
frequency instabilities in a rotating magnetized plasma

are described using two-fluid approximation. The linear
eigenvalue problem is numerically solved to show the
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existence of spiral solutions, which well reproduce the

characteristic feature of experimental observations. The

universal mechanism of spiral pattern formation is

proposed with a simple example, and it is concluded that

spiral structure is a kind of interference pattern between

azimuthal mode function and radial mode function, the

latter of which becomes complex in an unstable system.

2. Experimental Results
Plasmas were produced in a cylindrical chamber

with external magnetic fields, by a microwave with a
frequency 2.45 G}iz launched along the field line from
an open end of the chamber. The magnetic field
configuration was so-called a beach structure for this

microwave, and the electron cyclotron resonance point

was located in the middle of the chamber. An electron

cyclotron wave was excited in the plasma [4], and fully
absorbed before reaching the ECR point because of the

large absorption coefficient. An argon gas was used in

Fig. 1 End view image of spiral structure in an ECR
plasma.

the experiment, and the electron temperature and density

were 5 eV and I x 1012 cm-3 for the input power < I
kW, respectively. Stationary spiral patterns were

observed in the pressure range | -2x 10-2 torr. The size

of plasma was 20 cm in diameter and 50cm in axial

Iength.

Figure I shows an end view image of a spiral
pattern taken by a CCD camera located at the other open

end of the cylindrical chamber. This pattern doesn't
move with time, when the experimental conditions are

kept constant. This means that the eigenfrequency of
this pattern is equal to zero. As seen in this figure, there

are two winding arms, the radius of which in the polar

coordinate system is proportional to the angle of rotation

as shown in Fig.2. This is the characteristic feature of
Archimedean spiral.

To identify what makes spiral structure, we carried

out visible line image measurements (see Fig. 3). Figure
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Fig. 2 Arm radius as a function of angle in polar co-
ordinates.

Fig. 3 Line emission image. Left: Arl l42O nm), right: Arll (488 nm).
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3(a) is the gray scale image for neutral argon line ArI
(420 nm), and Fig.3(b) for argon ion line ArII (4gg nm).
Since the electron temperature is almost constant over
the whole cross section, the gray scale in Figs.3(a) and
(b) are roughly proportional to nsn. and nin",
respectively. The same patterns are seen in the both
figures. Considering that the pattern of ArII image
represents density perturbation, we can conclude that the
observed spiral is a density modulation pattern.

As mentioned above, the spiral pattern doesn't
move with time (stationary structure), however, the
background plasma rotates around the center axis due to
E x B drift. The plasma flow velocity was measured
with a directional Langmuir probe [5], and the
normalized azimuthal velocity as a function of radius is
shown in Fig.4. As seen in this figure, the plasma rigidly
rotates in the core region (r/a < 0.5, a: plasma radius),
and then the azimuthal velocity decreases with radius in

the outer region, indicating existence of shear (the
direction of rotation is clockwise for Fig. 3).

When the magnetic field is inverted, the polarity of
rotation in spiraling into its center (refer to as polarity of
spiral in the followings) changes the sign as shown in
Fig. 5. It should be noted that the same patterns are seen
in both figures except the polarity of spiral. Since the
plasma rotates due to E x B drift, and this velocity
changes the sign with the inversion of magnetic field B,
the result suggests that azimuthal rotation of plasma
plays an important role in exciting the spiral density
perturbation.

Here we summarize the experimental results;
(l) Spiral pattern is observed in an azimuthally

rotating plasma.
(2) It is identified as a density modulation pattern

and categorized into Archimedean spiral.
(3) The spiral pattern does not move with time,

which means that the eigenfrequency of this
structure is equal to zero in the laboratory
frame.

(4) The background plasma exhibits an E x B
rotation, and there is a shear in azimuthal
velocity profile.

(5) The polarity of spiral winding changes its sign
when the direction of magnetic field is
inverted.

It is well known that rotating fluids excite various
types of instability, and generate spatio-temporal
structures such as Taylor vortices. According to the
experimental observations, it is natural for us to consider
electrostatic instabilities in a rotating plasma with
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Fig. 4 Azimuthal flow velocity profile.

BO B@
Fig. 5 Gray scale images of spiral structure. The direction of magnetic field is inverted in the right figure.
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external magnetic fields.

3. Low Frequency Perturbations in a
Rotating Magnetized Plasma
We consider low frequency perturbations in a

rotating plasma with external magnetic fields. Special

attention is paid to stationary structure and its spatial

pattern, to explain the experimental observations

Low frequency perturbations in a rotating plasma is

formulated using two-fluid approximation [6]. The

continuity equation and the equation of motion for

electrons and ions are written bY ,

Y.v(n@ a@'))=o ,

E''o' 
* t)@t .v t)td) =:n(-ro* ] ,'"'*tr ldt - m"\ c I

- 6"" =l- Yp" -ro u@) , Q)"'' ffoffio "

where d stands for ion or electron (i or e), n(d) the

density, and u(o) the velocity. We take into account

dissipation due to ion-neutral and electron-neutral

collisions, for which vd means the collision frequency.

The quantity { is the electrostatic potential. The ions are

assumed to be cold, and the pressure gradient force is

considered only for the electrons. Although the profile

of unperturbed quantities, ns(r), as(r), and @6(r)' are to

be determined in a self-consistent manner' we here

assume them, for simplicity. AU the physical quantity

AQ, z, A is decomposed into the unperturbed part' and

perturbed one, which can be expressed by the radial,

azimuthal. and axial modes;

A (r, z, o) = Ane) + A1 (r)' si(kz+ 
te - ot1 (3)

where k is the wavenumber (complex) in axial direc-

tion. L the azimuthal mode number, and ar the eigen-

frequency.
The ions are subjected to E x B drift and the

electrons to E x B drift and diamagnetic drift. The

stationary azimuthal velocities for ions and electrons

thermal velocity. The quantities C)i and Q" are the ion

cyclotron frequency and electron cyclotron frequency,

respectively. The second term in ion velocity equation is

the correction due to centrifugal force. Other velocity

components for both ions and electrons are also

obtained from Eq.(2).

Substituting these velocities for both ions and

electrons into the continuity equation, linearizing and

invoking the charge neutrality, we have the following

equation for the perturbed potential Qa with a mode

number I :

^ r I t "..|d'9*l+ * o'1,'o lY*lBte>{lo, =0, (6)
d€' '11' d4 I d6 l', 

'"', ?',|"

-k2o,f)" l. (ot. \
P \5 ) = F-, tal r1 rarl \' 

- a -V r, 1

(l)

a)

where ars and 0)* are the angular frequency of E x B

drift and diamagnetic drift respectively, and { is the

normalized radius rla. The following notations are used

in Eq.(7); f1(ar) = vi-i(a- (' a[\1. and l.(ar) = v.-i(a
- t ,3\. This equation describes low frequency

instabilities such as dissipative drift wave instability'

centrifugal instability and Kelvin-Helmholz instability

[7]. The contributions from flute modes (centrifugal

instability and Kelvin-Helmholz instability) are much

smaller than that of dissipative drift wave instability

under the present experimental conditions, and thus we

concentrate our attention to the dissipative drift wave

instability (the first term of Eq.(7)).

To obtain the stationary solutions, we first fix the

real part of eigenfrequency ar to zero, and numerically

solve Eqs.(6) and (?) with free parameters of imaginary

part of ar and wavenumber ft. For this purpose' Eq'(6) is

transformed into a set of ordinary differential equations,

and then numerically integrated by the Runge-Kutta

method, in which the boundary conditions

Qt=O at €=O (center),

Qt=O at €=l (walt) (8)

are imposed.

Figure 6 shows the radial eigenfunction @a for A =

2 mode, in which the solid line indicates the real part'

d ln no * dq8' * t d'u';b

dE d€ a d4'

due to the unperturbed potential and density are

,s,=:ql,-r*+l'+'g"l-ou ol+vf [' \o]+vl/ r dr 
I

,[?=ffiS(o.t l-tnno(r))

(4)

(5)

where C5 is the ion sound velocity, utr, the electron
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and the broken line the imaginary part. It is noted that

rlro

Fig. 6 Radial eigenfunction (Ref.6).

Fig. 7 Contour plot of potential (Ref.6).

Fig. 8 Vector field plot of flow velocity associated with
spiral structure (Ref.6).

the radial eigenfunction becomes a complex function,
and there is a phase difference between the real and
imaginary part. The phase difference plays a key role in
producing spiral patterns, which will be discussed in
later section.

Two-dimensional pattern is visualized by making a

product ot Qp(r) expli(.01 and its contour plot for rhe
real part, which is shown in Fig.7. A spiral pattern with
two arms is clearly seen in the figure. Since the density
perturbation is related to the perturbed potential, the
spatial pattern of density perturbation contour is the
same as Fig.7. The relation between arm radius and its
angle of rotation in the polar coordinate system indicates
that this spiral is an Archimedean spiral.

The vector field plot of flow velocity associated
with this spiral structure is depicted in Fig.8 In this
figure, each arrow is indicated by dark gray for positive
radial velocity and by clear gray for negative radial
velocity. It is interesting to note that the flow field
associated with this spiral structure is not a sink nor a
source; the plasma goes in along the clear gray arrows,
reaches the center, and then goes out along the dark gray
arrows, in other words, the flow vector field associated
with this spiral is a circulating structure between the
center and peripheral regions. This flow vector field is
well explained by the E x B drift of the perturbed
potential presented in Fig.7.

4. Universal Mechanism of Spiral Formation
We consider here the mechanism of spiral pattern

formation. As already mentioned above, the existence of
complex radial eigenfunction is essential in producing
spiral pattern. Let us take a radial function Q(pr), and
make a product:

Q(Fr).exp[il0l (e)

where B is a parameter. When Q$r) is a real function,
the radial and azimuthal structures are independently
determined by the radial and azimuthal functions
respectively, never generating a spiral pattern. However,
when @(Br) becomes complex, this product is rewritten
as

| 0(B r)l' exp [iArg[ / (F r)] + i I el

0.10

0.05

l*"
: o.oo

o

(10)

The argument of radial function ArgtQ(Br)1, which is
generally a function of r, is renormalized into the phase

of exponential function, and produces an r-dependent
phase. The condition of constant phase:
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Fig.9 Contourplotof aproductof Bessel functionandexponential function.(left:p=1.0;right F=1+O.25il

gives an r - 0 relation for the locus of constant phase

points, producing a spiral nature in its spatial structure.

Archimedean spiral corresponds to the simplest case, in

which the argument ArSIQ$r)l is proportional to r.

We give here a simple example. Let us take a

product of Bessel function and exponential function

J(Br).eito ( (, = 2). When the parameter B is real, the

azimuthal pattern produced by this product is

completely determined by the exponential function, as

seen in Fig.9(a). However, when B becomes complex,

an "interference" between radial and azimuthal mode

functions takes place, and the contour plot of this

product generates a spiral pattern as shown in Fig.9(b).

It is emphasized here that we don't assume any specific

physical situations so far. Therefore, this scenario on

spiral pattem formation may be a common mechanism

underlying in many other systems [8,9].
To give the physical meaning of complex radial

eigenfunction, we return to Eq.(6). When B in Eq.(6) is

real, the radial eigenfunction becomes a real function. A
complex radial function occurs only when B is complex.

Noting that the complex B is due to the system being

unstable (dissipative drift wave instability), we can

conclude that the occurrence of spiral nature is
attributable to the instability. It should be pointed out

that instability plays an essential role in two aspects: (i)

self-generation and growth of structure, and (ii)
generation of spiral nature.

The physical picture of spiral formation in the

present experiment is the followings; the ions rotate

azimuthally by E x B drift. Since the ions are much

heavier than the electrons, they are subjected to

centrifugal force, the rotation frequency is affected by

this effective sravitational force, while the electrons are

driven by both the E x B drift and the diamagnetic drift.

The difference in azimuthal drifts between the ions and

electrons induces charge separation, which cannot be

fully neutralizedby the electrons whose axial motions

are dragged by the collisions with neutral particles. Thus

drift wave instability takes place and the density

modulation associated with this instability is organized

in such a way that the central part rotates almost rigidly,

while the outer part lags behind the central part because

of the shear in azimuthal velocity profile, consequently

producing a spiral structure.

Although we have reported the occurrence of
stationary spiral, which is easy to find out in the

experiment, the occurrence of non-stationary spiral will
be more general and appears in a wide range of
experimental conditions.

5. Summary
The experimental results and theoretical analysis on

formation of spiral structure are presented. The spiral

pattern in an ECR plasma is identified as a density

modulation excited in a rotating magnetized plasma.

Linear mode analysis on the low frequency instability
shows the existence of stationary spiral solutions, which

well reproduces the experimental observations.

Since the present analysis is a linear analysis, we

cannot determine the absolute value of the amplitude of
perturbed density, which should be balanced, in the

course of instability development, with the higher order

effects and the nonlinear effect. It is very difficult to

deal with this problem for general cases. However,

when the characteristic scale length in radial direction is

much smaller than the axial one, these scales are

separable by using the reductive perturbation method
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[10]. In that case, we obtain Eq.(6) for the radial
eigenfunction, and the one-dimensional Gintzburg-
Landau equation for the axial eigenfunction, which
permits localized solutions made from competitive
effect between the dispersion, diffusion, and the
nonlinearity [1]. The existence of spiral structure,
which is axially localized with finite amplitude, is
possible.

Spiral structure is a kind of "interference " pattem
between azimuthal and radial functions of unstable
systems. This simple mechanism may universally occur
in other unstable systems.
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