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Abstract
Boundary layer analysis of forced magnetic reconnection due So a boundary perturbation is revised.

This revised analysis introduces correct asymptotic matching to take into account the effect of inertia in

the inner layer precisely. The initial evolution of a new reconnection process is characterized by some

significant features. One is that a reconnected flux increases on the same time scale as the boundary

perturbation, which excludes the Sweet-Parker time scale obtained by use of the constant-V/asymptotic

matching. Another is that an induced surface current on a resonant surface is in such a direction as to

oppose the progress of the reconnection. Moreover an equation for the time evolution of the reconnected

flux is proposed in terms of an integral equation.
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1. lntroduction
In tokamak plasmas, the boundary perturbation is

caused by resonant magnetic field errors. The error field
is the small deviation from axial symmetry of the

magnetic field lines and it perturbs the plasma boundary

to form magnetic islands []. The boundary perturbation

also models the presence of a magnetic signal produced

from another magnetohydrodynamic (MHD) event, such

as a sawtooth crash. This boundary perturbation can

produce the seed islands for the neo-classical tearing

mode [2]. For example, the magnetic signal with
poloidal and toroidal numbers m = 3, n = 2 is produced

by an m = n = 2 magnetic signal associated with a

sawtooth crash in combination with toroidal geometry.

Even if a magnetic equilibrium is stable for resistive

modes, an externally imposed boundary perturbation

gives rise to magnetic reconnection called forced
reconnection [l].
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The response of the plasma to the applied boundary

perturbation is determined by a time dependent

coefficient, called the reconnected flux. The time

development of the reconnected flux is calculated by use

of boundary layer theory as an initial value problem [-
61. In the previous analysis, the time scale of the initial
evolution of forced reconnection is believed to be the

Sweet-Parker time scale. We reveal that this time scale

stems from the particular matching conditions which are

valid only in the constant-yapproximation; the effect of
the inertia in the inner layer is neglected in this

matching condition. Therefore the results in previous

works do not reflect the effect of the inertia correctly.

We introduce the appropriate asymptotic matching

and adopt the exact solution for the inner layer equation

to take into account precisely the effect of inertia in the

inner layer [7]. The improved roconnection process
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exhibits a new time evolution of the magnetic islands
and of the surface current induced on the resonant
surface.

2. Model and Boundary Layer Theory
We consider the response of a slab of

incompressible plasma to an applied boundary
perturbation. The plasma is supposed to be bounded by
two parallel perfectly conducting walls. The magnetic
field is represented by B = BTert ezxVr{, where B,
stands for a uniform toroidal field and rpis a magnetic
potential. We assume that the xy-plane is normal to the
toroidal field, while the y-axis is parallel to the wall and

the.r-axis normal to it.

2.1 Outer region
The outer region is governed by the ideal MHD

equilibrium equation,

Vxly xp;=6,

where j = Y x Bl4n is the current density.
In the absence of the boundary perturbation there is

a static equilibrium which is represented by an even

function, V = Vo@), subjected to the boundary
conditions Vo(!a) = const., where -r = ta expresses the

boundaries of the plasma. This equilibrium is assumed

to have the resonant surface at the center of the plasma,

t/o(O) = 0, and is supposed to be stable for the usual
tearing mode.

Let us impose a boundary perturbation on the
original static equilibrium. It is described by means of in
terms of a deformed plasma boundary as

V(x =+ @ - 6 costcy))= const. ,

where ft and d are the wave number and the amplitude of
the boundary deformation, respectively. The boundary
perturbation is assumed to be weak, 6 << a, such as the

error fields in a tokamak. In this work, we consider a

time varying boundary perturbation, 6 = 6(tlr"), instead

of a suddenly imposed boundary perturbation. The time
scale of the deformation r" is assumed to be much
slower than the Alfv6n time scale but much faster than
the resistive time scale, 11 11 T" 11 Tpi Ts and ?a are

defined later.

The magnetic potential perturbed by the boundary

deformation is written as

V@,t)-Vo@)+ttrr!,t)cosky, A)
where ry/.x,t) denotes the perturbed part due to the

boundary perturbation. Since the perturbation is imposed

on a time scale much slower than the Alfv6n time
scale,the plasma is quasi-static and obeys the ideal
MHD equilibrium equation except in the vicinity of the
resonant surface, where x = 0. The ideal MHD
equilibrium equation, Eq. (l), for the perturbation

%(.r,r) is reduced to

. |a'vt,(x.tr . IviG)1+ -k'v,(x,r)Ilri, I

v"6@)vr@,t)=o, (3)

with the boundary condition

V J! a, t) = 6 Q I x") V; @)= W 
" 

G I r") .

The solution to this equation, ry1@,t), should be an even
function of.r, because Eq. (3) and the boundary
condition are unchanged for x -+ -x.

The solution to Eq. (3) is written as

(1) V r@ ,t ) = ( r(O,t)f (x) + rlr 
" 

(t / r") g (x) , (4)

where/(x) and g(.r) satisfy Eq. (3) respectively, and are

subject to the boundary conditions f(0) = I, f(+6) = Q

and s(0) = 0, 8(ta) = | 12,51.

We consider the time evolution of the quasi-static

equilibrium as an initial-value problem, by applying the

Laplace transform to the outer-solution, Eq. (4). Then
we derive the expansion to the outer solution as

A,
7,(x,s;= fu ,{0,t1+ fu ,{r.t7 7" r* "',

x++0, (5)

where

A',,1s; = =+ I 

dtr' tt'tll*
t/,(0.s) l_ dx 

l_,

=A'o+ Ai 
?JOr@

(6)

and where

t -. .l+o I .l+0

4=ld/txt; A,.=ldst"t;"Id"j_o "tdxl_o

The first term, Af, is the tearing mode stability
parameter in the absence of the boundary perturbation.

Voand for the ideal response to the boundary
perturbation, respectively. Since the original static
equilibrium is supposed to be stable, Ai is negative.

The quasi-static equilibrium, Eq. (4), is determined
only by the reconnected flux V{O1), because rtr"(tlr") is
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assumed to be a given function. In order to obtain the

reconnected flux we should investigate the dynamics in

the vicinity of the resonant surface, i.e. the inner layer.

In the analysis of the inner layer it is important to
include not only the resistivity but also the inertia of the

plasma corectly.

2.2 lnner layer
We apply the Laplace transform

dt, A)

to the linearized reduced MHD equations. The initial
conditions for the perturbations are t4(x,0) = g'(r,0) =
0, because there is no deformation of the boundary at I =
0, Vr,(0) = 0. By stretching the variables in the vicinity
of the resonant surface according to

i=4-. 3=r-s.e=f ro i"'. r"=ro- ea, " _c", _ 
\r*kal 

, ,( 
€ka,

the equations in the inner layer become

previous works is appropriate only in the constant-V/

approximation. In order to clarify this point, we rewrite

the asymptotic expansion of {yi,,Eq. (10), as

i ->+-, 01)

where

ty,,(i)=*{t. +.. }

I -
Al.(s)= --Ll2Y:l

€o V/- | .1" 
l__

l(',r) = [* f{",t) ,-"

^ d' fu,, ^ d'fu,^

" dt' =-* df

f (33Dt4 + 5t4)

In the previous analysis ll-4),ld'ithldtlll is divided by

t,"Q,3) instead of rg- in Eq. (12). That is valid only in
the constant-V/approximation realized by neglecting the

effect of plasma inertia in the inner layer, because the

effect of inertia makes rZi,(0) deviate from tp;. \t* - -
y-. Therefore the matching condition derived by the

expansion, Eq. (ll), reflects the effect of inertia in the

inner layer correctly.

Asymptotic matching of Eqs. (5) and (ll) yields

the new Laplace-transformed reconnected flux

_ESt,o

8ea

f (33D t4 -r/4)

q2R qlB
"A "Rt -_rc- 

^A 
,

(ka)'''

(r2)

(13)

(14)

reconnected

(16)

(8)

(e)

frr,(o,s)=##t
d'fu,,

sVin-xVin= 
df 

,

where

. Z,(x.s) 6,(x,s)
Vlin\x,s )= 

V,,Jo),.r, 
9,,\x.s )=-iaa ,

e = e{xj) sin fty is the stream function, Ta = al11o, 7* =
4tta2l4 and u1- V{QlaA[-+rp.

The inner-layer solution can be expanded
asymptotically as

ly,,(i,3 )=V*

4. Initial Evolution
In this section, the Laplace-transformed

reconnected flux, Eq. (13) provides an initial evolution
of the new forced reconnection process.

We consider a time dependent boundary
perturbation as

ViQ) fv"Qtt")=; e.
The Taylor-series expansion of the

flux is given by Eq. (13) as

v,(0,,)=-* \ry*. I, (rs)

where

- -No-
L^= 

- 

L^." ntk

for i -+ 1 -, where f is the Gamma function.

3. Reconnected Flux by Exact Asymptotic
Matching

Demanding that the solution to the inner-layer
equation matches asymptotically with the solution in the

outer region yields the exact matching condition. which
includes the effect of the inertia in the inner layer
correctly. On the other hand the matching adopted in

-r-+ f (33Dt4 -U4)
rG3nt4 +5/4)

i +'.' , (10)

denote the ideal time scale and the typical time scale in
the inner layer, respectively. This reconnected flux
vanishes at t = O to the initial condition. We consider the

time scale of the reconnection process. The initial
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'evolution of the reconnected flux is dominated by the
first term on the right hand side ofEq. (15), therefore its
typical time scale is the same as the time scale of the
boundary perturbation, T", and does not include the
Sweet-Parker time scale at all.

When the boundary perturbation is imposed, a

surface current is induced at the resonant surface. The
amount of surface current is represented by the total
current in the inner layer and is equivalent to the finite
jump of the y-component of the magnetic field at the
resonant surface. .r = 0.

(r7)

Substituting Eqs. (14) and (15) into Eq. (17) gives the
initial evolution of the total current in the inner layer as

xf(n-

x ^tx lr{ix- 1/a)1'?exp(- (4x)2u tt r" - rx)d,x ,

where

Tn= 4

14n - l)2u

6..Summary and Discussion
We have improved the asymptotic matching in the

boundary layer analysis of forced reconnection due to an

externally imposed boundary perturbation, because it is
shown that the asymptotic matching in previous works

[-4] is not appropriate and is valid only in the constant-
tp approximation. The appropriate asymptotic matching
yields the exact reconnection process which reflects the
effect of plasma inertia in the inner layer correctly.

It is shown that the characteristic time scales of
forced reconnection in the initial evolution do not
include the Sweet-Parker time scale deduced in previous
works for island formation due to error fields [1,3,4] and
for seed island formation [2]. The reconnected flux
initially increases on the same time scale as the
boundary perturbation, r,. Therefore the correct
asymptotic matching conditions lead to a substantially
different time scales for initial evolution of the forced
reconnection due to a boundary perturbation from the
ones in previous works. The correct asymptotic
matching also yields the new feature of a surface current
induced on the resonant surface. In the initial evolution,
the surface current increases with A'(t) < 0 so as to
oppose the progress of the reconnection. In contrast, it
was believed to be a typical feature of forced
reconnection that A'(r) > 0 and A'(r) -+ + 6 at t = 0, in
previous works [1,3,4].

These new results, which are the increase of the
reconnected fluxes on the time scale without the Sweet-
Parker time scale and the negative surface current, A'(t)
< 0, suggest a modification of the previous estimation
for the S = TnlTe scaling of the widths of the islands due
to error fields [3] and of seed islands [2] in tokamak
plasmas. This is because the previous analysis of the
reconnection process subsequent to the initial evolution
is based on an initial evolution characterized bv an

-4kG(t\=-
JLL

\/n- r/4
nl.

(

{**ori,.I
I L Lf n=l
\

| / 2) exv {1) sin ( + i)} . #, l,-

(18)

In order to compare Eq. (18) with the result found in
previous works [,3,4], we consider the time evolution
of the stability parameter A'(r) = LBrlty(0,t). The
stability parameter A'(t) is negative in the initial
evolution and A'(r) = 0 at / = 0, while it was claimed
that A'(r) --r - with the positive sign at r = 0 in previous
works. The sign of A'(t) determines whether the surface
current stabilizes or destabilizes the magnetic islands.
The negative sign of A'(r) or A8r(r) implies that the

surface current is induced so as to oppose the growth of
the magnetic islands. However the push caused by the
imposed boundary deformation overcomes this
resistance to form the magnetic islands.

5. Evolution Equation for Reconnected Flux
In the preceding section we have obtained the

initial evolution. In this section we propose a new
method to determine the time evolution of the
reconnected flux. By use of this method, we can obtain
the time development subsequent to the initial evolution.

The inversion of the Laplace transform of Eq. (13)
gives the following inhomogeneous second kind
Volterra equation:

, I ft -N"v'(o,t)- u I v'Q,c761v-rrdt =; v"G).a0 J0 l\0
(19)

where the kernel G(t) is the inverse of the Laplace
transform of Ai,"(s) and is written as

LB,(I)=-N"{{f *. I
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increase of the reconnected flux on the Sweet-Parker

time scale and the positive surface current, A'(t) > 0.

Such a modification of the transition is expected to have

a significant effect on the time scale of the reconnection

and on the decay of the surface culrent in the nonlinear

stage ofisland formation due to error fields [3] and seed

island formation [2].
This modification is described by the subsequent

evolution to the initial evolution. It will be obtained by

numerically calculating the inverse of the Laplace

transform of the reconnected flux by use of the integral

equation.
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