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1. lntroduction
The reduction of anomalous transport has been

analyzed in the Heliotron configuration based on the

turbulent transport model [] and the internal transport

barrier has been studied in helical plasmas due to the

electric field bifurcation [2]. Steep gradient of the radial

electric field and the internal transport barrier have been

found in the CHS plasma recently [3]. Through these

theoretical and experimental studies, the possibility of
the internal transport barrier has been explored. In these

previous theoretical studies, the critical heat flux was

obtained for the transition based on zero-dimensional

model [2]. The investigation about the dynamics and the

spatial structure is needed in consideration with the

spatial dependence of the physical quantities.

In this article, the model associated with the

transport barrier in helical system is presented. The

possibility for the transport barriers (the edge transport

barrier and the internal transport barrier) based on the

bifurcation model of the electric field is discussed. We

examine a set of one-dimensional transport equations

which constitute the temporal evolution of the

temperature and the diffusion of the radial electric field.
The simplified form [2] of the neoclassical flux which is

associated with the helical-ripple trapped particles is

used. We study about the radial dependence of the

temperature and the heat conductivity and show the

states which relate the transport barriers.

2. One-dimensional Model Equations
In this section, we show the model equations used

here. We use cartesian coordinates and the x-axis is
taken in the radial slab plasma in this article. We

consider the slab region 0 I x 3 a, where a is the minor

radius. We here use quasi-neutrality n = ke = tti. Tbe
neoclassical flux associated with the helical-ripple
trapped particles are discussed in [4] and is simplified as
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where the coefficient tlp are a numerical constant of
order unity, Ci = 1.5(e,/en1tt21T"l(v,rBea))2 and the
diffusivity Di = Ce? etot3 a]lv, for the species j. Here, r,
is the toroidal aspect ratio, e1, is the helical ripple, v, is
the collision frequency, a2 is the toroidal drift velocity
and Tt is the temperature. The prime denotes the
derivative with respect to the radial direction. We set the
normalized parameters; X = "[QeaE,lT", N = - {qan'ln
and I = -',lC,q22aT"'17". We here take a limit of a
strong electron temperature gradient. For example, this
is suitable for the case of electron cyclotron heating
where the density profile is often observed to be flat.
For this case, the energy flow in the electron channel is
larger than that in ion channel. Using these normalized
variables and if we may take a limit of a strong electron
temperature gradient, lT'| T | >> ln'| nl, Eqs. ( 1) and (2)
are simplified as i - -X + bY and f = ((xt1t + x21,
where D = Qnl\zz, € = D/D", ( = T"/Ti, i" =,,[-qol"t
(nD") and i, = ^[-qor,l(nD"). The parameter t122 is the
coefficient related with the gradient of T" in the formula
for the heat flux of electrons. We omit the subscript e

with respect to the temperature, T = Q, in the following
description.

Under the assumption that the density is constant
temporally and spatially, the temporal evolution of
temperature Z is written as

(3)

where the normalizations ilrE -) t, xla --> x, )(l)h ) )6
TlTs -+ Z. The subscript 0 represents the typical value of
the physical quantity and tr6 = (a2l6i is the energy
confinement time. The modelled heat conductivity 7 (X)

is given as 76= Tysol(l + X2) t )(ono . The first term in
the right hand side represents the component which
depends on the radial electric field (e.g., in some limit,
of neoclassical heat conductivity) and the second term is
the component which is independent of the radial
electric field (e.9., in some limit, anomalous one),
respectively. In Sec. 3, we study the both cases taking
only the part which depends on the electric field and

only the part of the heat conductivity which is
independent of the electric field. In Sec. 4, we take only
the part which depends on the electric field of the heat

conductivity. Here, the heat source is neglected in the

region considered here and the heat flux is given as a

boundary condition. The equation for the time evolution
of the radial electric field E, is shown as

(4)

Here, p is the normalized shear viscosity of ions. The
parameter e is given by t = T,lt", where the parameter
r,(= q(e1Tl(e2na2111 is the typical time in which the
radial electric field changes. The parameter €I
(- (l + 2q2)eoc2lu]1 is the perpendicular dielectric
constant for a magnetized plasma, s0 is the dielectric
constant in the vacuum, q is the safety factor, c is the
light speed and z',a is the Alfv6n velocity in the plasma.
For parameters I = I (T), T = 3OO (eV) and a = O.2 (m),

we obtain t,lt6 = 0.01. When the quantities of
temperature and density are specified in Eq. (4), the
location of the electric field interface has been
determined according to the Maxwell's construction [2].

3. Stationary State and Transport Barrier
In this section, we fix ein = 10, where qin is the heat

flux 4 (= -XVT) at x = 0. We set -T'IT = 10 at the edge
(x = l) to examine the solution of the high confinement.
Furthermore, we choose )(' = O at x = 0 andx = I to
study the structure of the electric domain.

At first, we choose the part which depends on the

electric field; 7 = )(rcol(l + X2) for the heat
conductivity. The cases for two values (p = | and p= |
x 10-2) of the ion viscosity are studied. The parameters

are shown as e= 0.01, )(= )(Ncn= l, b = l, E= | and C

= 16.0. Stationary temperature profiles are shown in Fig.
l(a), analyzing Eqs. (3) and (4). The spatial structures of
the radial electric field X are also given in Fig. 1(b). The

steep gradient is obtained and the transport barrier with
the some radial width near the edge is seen in both
cases. The radial width of the transport barrier is found
to be proportional to fi which is the same dependence

s € =r-- r.*ud'xdt 0x2
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Fig. 1 The radial dependence of the stationary (a)
temperature and (b) radial electric field two cases,
F = 1 and F = 1 x 10-'?. The model of the heat
conductivity is 7 = T rrolll + X2l.
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with that in Ref. [5].
To examine the stationary results in details, we

show the stationary solutions on (Y, X) plane in Fig. 2.

The dotted line shows the ambipolar condition 4 = Il in
Eq. (4). In the line of the ambipolar condition, the

branch for the large X is namely called as the high

confinement mode (H-mode) because the flux is reduced

for the larger X. On the contrary, the branch for the

smaller X is named as the low confinement mode (L-

mode). The state around the upstream corresponds to the

L-mode, while the state at the edge corresponds to the

H-mode. The value of the diffusion term of X; 1t02XlN
is the contribution which balances with the deviation

X[Y] from the ambipolar condition. If the value of p
decreases, the line which represents the stationary state

gets nearer to ambipolar condition (See Fig. 2) (but does

not converge). This is because both Eq. (3) and the

ambipolar condition do not necessarily hold at the same

time in the stationary state.

Next, we employ only the part which is

independent of the electric field 26 = )(ono^ (= l) for the

heat conductivity. The boundary condition is same with

the case with the heat conductivity y - )(Ncol(l + *1 in

this section. In this case, both the stationary solutions of
Eq. (3) and the ambipolar condition can hold at same

time, because Eq. (3) is not coupled with the variable X.

Therefore, if the value of p approaches to zero, the line
which represents the stationary state gets near to the

ambipolar condition in Fig. 3. If the value of p is close

to zero, the Maxwell's construction is confirmed to
hold.

4. Periodic Oscillation and Transport Barrier
We choose -T' = 2 at the edge in this section. We

again set X' = 0 at.r = 0 and .r = I to study the interface

between the low and high confinement states. We

examine the calculation results for the various values of

4;n. Next, we choose the heat conductivity 7= yv1sol(l +

.1P1. Sotving Eqs. (3) and (4) with these boundary
conditions, the periodic oscillations of the edge

temperature I(.r = 1) and of the heat flux at the edge (x

= l) eou, are obtained. In Fig.4, we show the temporal

evolutions of (a) the temperature at the edge, (b) the

heat flux at the edge qou, and (c) the Lissajous figure on

the qo,, - T(x = l) plane. The parameters are same as

those in Sec. 3, while 4in = o.2 and p = l. In the constant

flux from upstream, the solution behavior is classified to

three categories. If 4;, is smaller than 0.083 the lower
flux solution is stationary, which corresponds to H-
mode. In the region 0.083 <,4; < 1.54, the limit cycle

10
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Fig.2 The stationary dependence on Y-Xplane with the
model 7=Lo/(+X2l'
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Fig. 3 The stationary dependence on Y-X plane when
the heat conductivity model 7 = Z,Don is used.

0.0
0.20 0.2s 0.30

T(x=1)

Fig.4 The temporal evolutions of (a) the edge
temperature, and (b) the heat flux at the edge gor.
The parameters are written in text. The trajectory
in the qou, - T(x = 1) plane is shown in Fig. 4(c).
The time sequence is indicated bY A, B, C and D
with arrows in (a), (b) and (c).

solution is obtained. The upper and lower boundary of
qin val,ue is determined by the gradient of the

temperature at the edge. If 4r, becomes larger than 1.54,

the higher flux solution becomes stationary.

In Figs.5(a) and (b), temporal changes ofthe radial

profiles of temperature and effective heat conductivity
are shown. The heat conductivitv becomes more
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1.

0.0 0.5 x 1.0

temperature and (b)Fig. 5 The spatial structure of (a)
heat conductivity.

suppressed from the edge to the upstream side in H_
mode state (case C) comilared with that in L-mode (case
A). A transport barrier with a finite extent is seen at.r =
0.3 in the radial structure of y in H-mode.The transition
is found to propagate from the edge to the upstream
sidejudging from the points which hold the relation dXl
dt=0.

5. Summary and Discussions
In summary, the model equation of the electric

field bifurcation is newly shown to contain the temporal
and spatial evolutions of the plasma temperature and
radial electric field. The formula of the particle flux in
helical systems is included in the diffusion equation of
the radial electric field X.

The stationary radial dependence of the temperature
is examined for the various values of the shear viscosity

,u ofions. The transport barrier at the edge is found. The
qualitative change of the stationary state due to the
models, i.e., 7 = )(ncol! + *) and )( = )(ono^ is also
studied. Next, limit cycle solutions of the temperature
and the heat flux are obtained in helical systems. It is
found that the dependence of thermal conductivity on

the electric field strongly influences on the location of
the interface. This finding illustrates the importance of
the one-dimensional analysis compared to zero_
dimensional analysis.

In this article, two parts (one part depends on the
electric field and another part is independent of the
electric field) for the heat conductivity are not studied at
the same time. The heat conductivity which includes the
both parts may add the variety of the structure and
temporal evolution of the physical quantities.
Furthermore, the coupling of the density development is
neglected for the transparency of arguments in this
article. In general, the spatial-temporal development of
the density is considered to be important. These are left
for future work.
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