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Abstract
A weakly nonlinear theory of the Rayleigh-Taylor instability has been developed for initial

perturbations with a finite spectrum width. Theoretical result agrees fairly well with hydrodynamic
simulation' Saturation oflinear growth and spectral broadening in a weakly nonlinear stage are discussed.
It is shown that a broad initial bandwidth leads to lower saturation amplitudes of the linear srowth
compared with that of a single mode case.
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1. Introduction
An interface between two fluids is unstable when

the interface is accelerated into the heavier fluid. This
instability is known as the Rayleigh-Taylor (RT)
instability. Recently RT instability has found a wider
spectrum of interest in such fields as geophysics and
astrophysics Il] as well as inertial confinement fusion
(ICF). The RT instability in ICF target implosion occurs
both at the ablation surface in acceleration phase and at
the inner shell-fuel interface in stagnation phase. Small
perturbation grows to amplitudes so large that the shell
breaks up prior to ignition. It is therefore extremely
important for ICF to predict the linear and nonlinear
growth of the perturbation.

It is generally recognized a single RT unstable
mode grows exponentially, until the amplitude is about
1/10 to 1/5 of the wavelengrh 12,31. Haan [4] was the
first who pointed out importance of a finite spectrum
width in nonlinear RT instability. However he a priori
assumed saturation amplitude of the linear growth and
nonlinear growth rate of individual modes, by using
simulation results. Ofer et a/. [5] extends Haan's modal
model by introducing the second order mode coupling,
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but with the same assumptions as Haan made for the
saturation of the linear growth.

In this paper, we have developed, for the first time,
a self-consistent nonlinear theory of the RT instability
for initial perturbations with a finite spectrum width.
The theory takes the third order nonlinearity into
account. The third order nonlinearity results in the onset
of the linear growth saturation. It will be shown that the
saturation amplitude of the linear growth thus obtained
agrees well with simulation results. Spectral broadening
in a weakly nonlinear stage is also shown. In Sec. 2,
governing equations are derived, while results of the
governing equations are discussed in Sec. 3.

2. Derivation of Governing Equations
We consider a planar interface between inviscid,

incompressible fluids without surface tension. It is not
difficult to extend other geometry, such as cylindrical
and spherical surfaces, and also to include surface
tension. We think of the system in a gravitational field,
g, with the interface z = z(x, r) between an upper fluid of
density p11 and a lower fluid of density pr, where x is a
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two-dimensional vector (.r, y), and Ps > Pr. Let z - O

and 7 = €(x, t) be the unperturbed and perturbed

surfaces, respectively. Periodic boundary conditions

apply in x and y, with box length L.
We consider a perturbation of the surface with a

small but finite bandwidth, ft = ks + 6k, where k has

discrete allowed values (2nmlL, 2nnlL), and l/c6l >

ldtl. Then the perturbation of the interface can be

expanded as

€(x , 0 =2 (y(t) eik' " = eiko " 2 €ro*ar e'60 '

= ((x, t1e\eo ' (1)

The amplituAe (6, r) thus introduced is a slowly
varying function in space.

We set up the problem in a standard way [6] for an

irrotational flow. Let Qt@, z, t) and Qlx, z, t) be the

velocity potentials in the upper and lower fluids
respectively. The velocity v is given by -Vpr for z> €
and -V@1 for z > (. From the assumption of incom-
pressibility, the potentials satisfy

Y'Qs=Y'Qt=0. A)
We require that @g and Qy go to zero as z goes to +6
and *, respectively. In the same way as the interface

perturbation, the velocity potentials are also composed

of slowly varying amplitudes as

Qs @ , z, t) = Q, (x , z, t) siko'' -h',

Q"(x,z,t)=\r(x,Z,t)sito'*h,, (3)

where /cs = lt.l.
From eq.(2), the amplitudes of the velocity

potential satisfy

where V = 0l& and we have neglected the third order

spatial derivatives of the amplitudes with respcet to.r.
From the definition of the surface perturbation {(r,

il.

with each other, namely

a4, a€a0"1 a€a0"1 ad" 
I

dr dx dx l, dy dy le dz 
le

a€ ah,l , a€ ah,l a0. 
I=fr#1,.fr;,1,-El, (6)

From equation of motion, the pressure in each fluid
is given by Bernoulli's equation,

lao 1 - Ip=pl+-* tvh'-s61. Q)
lot z l

At the interface the pressure should be balanced,

tlnalr=rrlr, (8)

where pg and p1 are evaluated with @g and ps or @s and

ps in eq.(7), respectively. Substituting eq.(7) into eq.(8),

we obtain

- |rv;"t'|, - rt]

=Pt +|-1,'r"'1,-,r] (e)

In eqs.(6) and (9), the partial derivative of the

velocity potential at the interface can be calculated by
Taylor series expansion with respect to the perturbation

amplitude under the assumption of ftsl{l - o(e) < 1.

Nonlinear terms in eqs.(6) and (9) generate higher

harmonics. Therefore the interface perturbation and

velocity potential can be written as

. € ;,.,.
1@, t\ = L E'.^', (x, t) einko' 

"
. S =,"'.ht@,t\= L Lii'@,Z,t\einko 

t-nbz,

,"[+1,

o, & o,=ifro * o,*il * "o1' r",

,,&o,=-iko {o,-+l*"ol' ^, 
(4)

d€ a€ a€a0l
d, = a, - Di ar--le ##1,=-#1,, (s)

(10)

We consider up to the third order nonlinearity in

order to describe the self modulation of the perturbation.

In eq.(10), n = 0 and n = 2 terms arise form the mode

coupling between ft6 modes and they are in the second

order of e2, while n = 3 term arises from the mode

coupling between &6 mode and 2ks mode as the third
order of e3. It should be noted that n = I term contains

the third order nonlinearity due to the mode coupling,

Qu@, D= 2 O[' @, z, t) einko 
r +nhz

where p is either Qs or Qv Since the normal component

of the fluid velocity is continuous across the interface,

0(l0t evaluated with either fg of @1 should coincide
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#=r?oo)-'#(* o)r',

for example, between 2fts mode and fts mode (2h - ko =
h). We also assume that the bandwidth is of the order of
e, i.e. 6k/ks - o(e), and 0$t0x - o(t2). After tedious
calculation, we obtain the governing equations as

number.

3. Results and Discussion
First, we show the validity of the governing

equations by comparing with two dimensional
hydrodynamic simulation. To solve eqs.(lla) and (l lb)
numerically, we define the slowly varying velocity
potential at grid points of which number and grid size

are chosen to be I = 32 and ksl\,x = 32, respectively.

Therefore the minimum wave number becomes 6k^i"/h

= 2nlkoLL,x = 1148. We choose a Gaussian distribution
function with the bandwidth of 6klks = l0-2 as an initial
spectrum of the velocity pelqb?lgl_gf which root
mean square(rms) equals 1q "l <(koely )2> = l0-3, and 6
= 0. Two dimensional simulation is carried out with the

use of a hydrodynamic simulation code, IMPACT-2D

Ul. In the analytical model, we consider only the slowly
varying amplitude of the velocity potential, while in the

hydrodynamic simulation we must use fine meshes to
resolve perturbations with wavelength of the order of
2nlks. We used mesh numbers of L,L, = 2048 x 300.
The wavelength corresponding to ,t6 is chosen to be l, =
L,/m and m = 48, so that the difference of the wave
number between the modes with m and m * I coincides
with the minimum wave number dft,1n in the analytical

model. Initial velocity perturbations are given for mode

numbers within n + LlZ = 48 + 16, with the same

amplitudes as those of the governing equations. The
Atwood number is chosen to be a = 0.82.

Figure l(a) shows the rms velocity amplitudes as a

function of time, where solid line is solution of eq.(l l),
and circles are simulation results. Saturation of linear
growth occurs around time of y f = 6-7 . Normalized
velocity amplitudes of each mode from 45 to 5l are

shown in Fig. 1(b), simulation results, and Fig. l(c),
solutions of eq.(l l), respectively. Dips of the veloocity
perturbations appeared in Figs. 1(b) and (c) correspond
to phase change due to nonlinear interaction. As shown
in Figs. 1(a), (b) and (c), solutions of eq,(ll) agree

fairly well with simulation results.

We now consider three dimensional instability, by
choosing L2 = (512)2, ks\,x = 3n and a = 0.8. The
minimum wavenumber then becomes 6k^inlko = 11768.

The initial spectrum of the interface displacement (EQ =
0) + 0, 6 = 0) is assumed to be a Gaussian distribution
function with the bandwidth of 6klks = 1O-2. Figure 2
shows the time evolution of rms amplitude, and
individual mode amplitudes (0, 0), (110, tlo), (120,
+20), and (130, t30). Exponential growth of rms

amplitude starts to saturate when it reaches

- !=lh 
" 
v l' 6,,, * 

u ni QY' * tr'.
2 k;)l ko | zyi

a d(r)* ,n\--:-' a*'
dt

kt lp, - 2pr) 
^r,. / ap,',i'

----;--------- I 'l - rTilPn+Pt) \ dt 
J

_ *i<pi-zpit 
l,-,,,l, Q,,,.

(Ps+ Pt)' I I

where p(z) is given by the second order equation,

a2 oe) ..a ,n, . 4+ 6u,dt''. (l lb)al =TiQ"'+ pn+pry at . ,

The surface perturbation amplitude is written as a
function of the velocity potential as,

Ert ko dQ"' td1Pr- P) dPttt. dqtzt

' =n ar - ry^Jp"+p) at at

-/"\
t.5 I

- ^ 
o6 [rp,-4 r,l Q$* ' Q'12,Ti(Pn+P)\ yi l

. 
0.d)2

(l 1a)

(r2)

ktr pr@^-3p) dQQ'.
+

2Y1@^+ P')'

*4! lprrrlz 
dd(rr.

Yi' t dt

dt

where we omit the bar for the slowly varying amplitudes

and the subscript H for Q. y, = "[a\g and y, =',[zakog
are the linear growth rates corresponding to the
wavenumber ft6 and that of the second harmonics,
respectively, and d,= (pu- n)l(n + pr) is the Atwood
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approximately to {<(k06)2> - 0.03 around time y1- 4.

This saturation amplitude of the linear growth is much

less than that of a single mode case. The broader initial
bandwidth leads to the lower saturation rms amplitude.

As shown in Fig. 2, the individual modes, (ft6, +

mLk^in, ks, t n\.kai) within Inl < 10, Inl < l0 also

starts to saturate at much lower amplitudes. The details

of the saturation of linear growth will be discussed

elsewhere.
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Fig. 1 {a) Root mean square of velocity perturbations
normalized by kolyt, as functions of normalized
time ylt; solid line is analytical result, while circles
are simulation results. Normalized velocity
perturbations of each mode from modes 45 to 51,
(b) simulation results and (c) analytical results.

In the weakly nonlinear stage, the large amplitude

modes (lzl < 5, Inl < 5) grow linearly in time, while

much higher modes (lml > 20, lnl > 20) grows very

rapidly due to nonlinear interaction as shown in Fig. 2.

Until time y rt = 6, the rms amplitude grows much

slowly compared with the linear growth. After that time,

many modes become comparable to each other. Around

time yJ = 8, the normalized rms amplitudes become
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Fig. 2 Normalized amplitudes of displacement ko(, as

functions of normalized time 7't Solid line is root
mean square amplitude, and others lines
represent amplitudes of each ko( mode. (ko, +

m5k^in, ko, + n6k^6!., (m, n) are indicated in the
figure.
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Fig. 3 Spectrum in weakty nonlinear stage, ko6(m' n)'
integers in row and col indicates lm, nl = lko,+
m6k-r", ksu + n6k-;.).
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greater than one, and the weak nonlinear theory breaks.
However it is found that if y2 = 0, the weakly nonlinear
stage continues much longer time, namely .EG6)r>- <
I upto yJ - 13. The condition of y2= 0 can be realized
by the mass ablation effect [8] at the ablation surface in
ICF or the surface tension. The long duration of the
weakly nonlinear stage with Tz = 0 predicts the
reduction of the nonlinear RT growth at the ablation
surface in ICF, not only in the linear growth rate.

In the weakly nonlinear stage, the broadening of
the band width occurs as expected. The bandwidth
becomes 1.5 times greater than its initial value at time
f { = 6. The spectrum of the interface displacement at

f ( = 7 is shown in Fig. 3.

4. Gonclusions
We have developed a weakly nonlinear theory of

the Rayleigh-Taylor instability with a finite specrrum
width. In the modal model [4,5], they a priori assume
that the linear growth starts to saturate when the root
mean square amplitudes reach values comparable to or
slightly greater than the saturation amplitude of a single
mode. The self-consistent theory developed includes the
third order nonlinearity, and thus the theory predicts the
onset of the linear growth saturation for perturbations
with a finite spectrum width without any assumptions.

Theoretical result agrees fairly well with two
dimensional hydrodynamic simulation, including
nonlinear phase change of individual modes. It is also

shown that a broad initial bandwidth leads to low
saturation root mean square amplitude of the linear
growth. This is quite different from that previously
expected in the modal model.

In a weakly nonlinear regime, large amplitude
modes grow linearly in time in the same way as a single
mode case. However many modes are excited very
rapidly due to nonlinear interaction, and broadening of
the bandwidth occurs. The mass ablation may reduce not
only linear growth but also weakly nonlinear growth
although further investigation is required.
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