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Abstract
The Spheromak Configuration, which is generally believed to be a minimum energy, force-free and

zero pressure gradient state, is shown to evolve as a relaxed state with minimum dissipation. The Euler-

Lagrange equation for the minimum dissipation relaxed state can be solved in terms of Chandrasekhar

Kendall eigenfunctions analytically continued in the complex domain. This state is not force-free and has

non zero pressure gradient and further shows the non constancy of the ratio of parallel current to the

magnetic field. This is consistent with many experimental measuremets on Spheromak.
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1. lntroduction
The Spheromak is a magnetic confinement system,

where the magnetic field is self-organized to form a set

of closed nested surfaces in a region of space. The

Spheromak configuration corresponds to the classical

"Hill's Vortex" of fluid dynamics. The toroidal and

poloidal fields of a Spheromak are of equal strength

approximately and are generated primarily by internal

plasma currents rather than extemal coils.

Important theoretical and experimental results for
the spheromak problem came from the application of
Taylor's relaxation model [] that conjectured the

magnetic fields in a plasma to relax towards a state of
minimum energy subject to the constraint of constant

magnetic helicity. In a closed system, the minimum

magnetic energy equilibrium satisfies the force free

equation V x B = l.B with l. = constant. Rosenbluth and

Busaac [2] obtained the spheromak field configuration
from the Chandrasekhar Kendal (CK) solution of the

force-free equation and thus attempted to confirm that

spheromak is a Taylor force-free state.

In reality, any plasma confining device must have a
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non-flat pressure profile. Also, since competing effects

are present in any experiment, deviations from a

uniform, constant )" can be expected. For spheromak,

such pressure profiles have been observed
experimentally and departure from minimum energy

state was also noticed [3-6].
Montgomery & Phillips [7] utilized the principle of

minimum dissipation rate for the first time in an MHD
problem to predict the relaxed states of a RFP

configuration. We try to establish here that a spheromak

equilibrium is a non force-free relaxed state, and

supports a significant fraction of perpendicular

component of current as well as a pressure gradient by

modelling the equilibrium as a state of minimum
dissipation rate with constant helicity.

2. Euler Lagrange Equation
The ohmic dissipation rate [7] for a magnetofluid is

given by

n = r7 
) i'dt, (1)
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where 4 is the plasma resistivity and the integral is over

the entire confinement region. The magnetic helicity
K = | A.Bdr is an invariant of motion in ideal
magnetihydrodynamics. If the turbulence is sufficiently
low, K still serves as a constraint as it decays at a slower

rate compared to R. If the energy dissipation rate given

by eq. (1) is minimized by including helicity as a

constraint on the minimization through the use of
Lagrange's multiplier X. ttre following variational
equation is obtained
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Since this must hold for arbitrary dc we obtain the

Euler-Lagrange equation :

VxVxYxB =AB, (3)

where zl =X,/n is a constant.

3. Spheromak Solutions of V x V x V x B =
AB
A solution of eq. (3) is constructed as a linear

combination of the solutions of the force free equation

V x 86 - LBo which are given in terms of
Chandrasekhar-Kendall eigenfunctions. The magnetic

field 86, being a solenoidal field can be decomposed

into its toroidal and poloidal ingredients:

Bo =Bor +Bop,

86r=Vx(€A),Boo=VxVx1{Yoy. (4)

Here ( is a position vector, and Be satisfies the Taylor
equation provided

1Y2 + 121@o = 0, Yo = oo | 1.

In spherical polar coordinates (r, 0, Q)

tv^
(=r, Yo(r, 01=:! i^{7r)P}{cos01ei'o. (5)

Here, j^(A,r) ls a spherlcal Bessel function, Pff (cos9) is

an Associated Legendre function.

The classical spheromak equilibrium solution is given

by n = 0, m = I state and the corresponding flux
function Xothat describes the lines of constant poloidal
magnetic field is obtained is ls = -r sin0 dYoldQ.

The solutions of eq. (3) are obtained as the analytic

continuation of the solutions of V x Bo = hBo to
complex values of ,1,. Expressing B as in eq. (4)

a I Oi'+ 1A.8)dr,

B -Vx f|ol*VxVx1(Y;,

o =L a,@,,, =+{dio)2io.,
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Fig. 1 The Spheromak

wlrere @; are the solutions of (V2 + Ero2\@, = 0 given

1D, - j^(),air)Pi@os9) ei'c. (8)

The expression for B given by eq. (6) then satisfies eq.

(3) for A = E. The corresponding flux function 7 is
given by

2

)(r. 01=+ >, d,a''ir17airysin2 0.
A i=o

In eqs. (7), the constants ai are fixed by assuming the

conducting boundary conditions

B-n=0, JXn=O at r=a, (e)

where a is the radius of the sphere. For a given vaue of
n and m, the value of Xa can be obtained from the

boundary conditions. The eigensolution with lowest
energy dissipation rate for the n = 0, m = | state has the

eigenvalue ).a = 3.99. The Bp lines, given by X =
constant are sketched in Fig. I for the lowest energy

dissipation state.

4. Results
For values of )La = 3.99, which corresponds to the

state with lowest energy dissipation rate, the plots ofjll/
B and j 1lB in the z = 0 plane are shown in Fig. 2. A non

constantjn/B profile is observed which is in contrast to

the usual Taylor state for which i, = constant. Also a

significant amount of perpendicular component of
current is obtained. This is similar to some of the

experimental observations [2-5], where a non constant
jnlB profile is obtained. The profiles of toroidal and

a) -0 .5

(6)
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521



.25
5

-0.5

poloidal magnetic field components in the z = 0 plane
are shown in Fig. 3. The profiles are similar to those
observed in ref. [3].

For ).a = 5 which is higher than the value
colresponding to the lowest energy dissipation state, the

Jnls
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Fig. 4 A plot of y,,/B and ;,/8 against rla in the z = 0 plane for ,l.a = 5.0.
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Fig. 2 A plot of ,|i,/B and /r/B against r/a in the z = 0 plane for ,l,a = 3.99.
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Fig. 3 The profiles of B, and B, against r/a in the z = 0 plane for the state ia = 3.99. The dotted curves show the field
profiles corresponding to the Taylor state for the same eigenvalue.
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profiles of jxlB and j1/B are shown in Fig. 4. For this
value of ),a, tbe fields, however, do not satisfy the
boundary conditions. In this case, a double humped
profile for the ratio julB. is sketched in Fig. 4. This state

also supports a perpendicular component of current
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Fig. 5 The profiles of Brand B, against rla inlhez= 0 plane tor La = 5.0.

showing departure from the usual Taylor state. A similar

observation for jxlB was also reported by Hart et. al. [3].
Also, such double humped profile for j11lB was obtained

by solving numerically the Grad-Shafranov equation

[3,8] for a spheromak with an oblate conducting
boundary. The profiles of toroidal and poloidal magnetic

field components in the z = 0 plane are shown in Fig. 5.
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