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Abstract
A two-dimensional (2-D) magnetohydrodynamic (MHD) simulation of the Kelvin-Helmholtz (K-H)

instability is performed in the plane transverse to the magnetic field for a random initial velocity
perturbation. The relative constancy of the total kinetic energy and a rapid decay of the enstrophy by the

selective dissipation with the numerical viscosity indicate that the successive pairings of vortices
occurring in the nonlinear stage of the K-H instability is a self-organization process. The spectral
distributions of the integrated kinetic energy, the enstrophy, and the integrated magnetic energy show

power law distributions at the medium subrange of the wavenumber in the well developed nonlinear
stage.
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1. Introduction
The shear in the flow velocity is a ubiquitous

feature in space and astrophysical plasmas and it is
susceptible to the K-H instability. The importance of the

velocity shear in the fusion plasma confinement has also

been recognized recently. The K-H instability occurring

at the terrestrial magnetopause is a prototype example of
the K-H instability occurring in the MHD sheared flows

[]. The nonlinear evolution of the K-H instability is

responsible for the transport of momentum and energy

across the velocity shear layer []. The pairing of
vortices occurring in the nonlinear stage of the
instability is a well-known nonlinear effect []. It has

been shown by a 2-D MHD simulation starting from a

coherent initial seed perturbation that the successive

pairings of vortices occurring in the nonlinear stage of
the K-H instability is a self-organization process [2].
The purpose of this brief report is to show that the self-

organization in the K-H instability, i.e., the successive

pairings of vortices, also arises for a random initial

velocity perturbation and the qualitative feature of the

self-organization in the 2-D K-H instability is rather

insensitive to the form of the initial seed oerturbation.

2. Simulation Model
A 2-D MHD simulation of the K-H instability is

performed for an initial velocity profile of vor@) = (Vsl

2) f,l - tanh (x/a)l and for a convective fast mode Mach

number of 0.35 [1-2]. The initial uniform magnetic field
is perpendicular to the simulation plane (x-y plane).

Time t is normalized by 2alVs, where 2a is the initial
thickness of the velocity shear layer and V6 is the total
jump of the flow velocity across the velocity shear layer.

The length of the periodic simulation box in the y-

direction is equal to 8 times as long as the wavelength

of the linearly fastest growing mode (i+c1a = 15.7a) I3l.
In Miura [2] a coherent perturbation, which was a sum

of the linearly fastest growing mode and its
subharmonics, was given as an initial seed perturbation
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with the peak amplitude of vr equal to 0.005Ve and the

temporal evolution of the instability was investigated. In
order to see the dependence of the self-organization on

the initial perturbation a random velocity perturbation

with its peak amplitude of v, equal to 0.00005V6 is given

as an initial seed perturbation in the present run. A two-
step Lax-Wendroff scheme with an artificial viscosity is

used in the present simulation and the number of grid
points is equal to 400 x 400.

3. Simulation Results
Figure I shows temporal evolutions of the total

energy (dotted curve), total internal energy (dashed

curve), total magnetic energy (dot-dash curve), and the

total kinetic energy (solid curve) integrated in the whole

simulation region. Each total energy is normalized by

0.0628a2p6, where p6 is the initial uniform pressure. It is
obvious from this figure that the total kinetic energy

remains almost constant during the simulation run in the

present 2-D MHD transverse configuration.

Figure 2 shows temporal evolutions of the total
square vorticity (enstrophy) integrated in the whole
simulation region (solid curve), the contribution to the

change of the total square vorticity due to the

compressibility (dotted curve) and the baroclinic
contribution to the change of the enstrophy (dashed

curve), which are normalized by Vo2. It is obviously seen

in this figure that the enstrophy decreases rapidly with
time with a small oscillating component, which is due to

the compressibility. It is also seen in this figure that the

baroclinic term is negligible. Since the time change of
the enstrophy is equal to the sum of the compressible
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term, the baroclinic term, and the viscous term [l-2], we

conclude that the rapid decay in the enstrophy shown in
Figure 2 must be due to the viscous dissipation. Notice

that although the present simulation is done for the ideal

MHD without any explicit physical viscosity, small

implicit numerical and artificial viscosities are included

to prevent spurious mesh oscillations. Therefore, the

enstrophy, which is the invariant in the 2-D, inviscid,
and incompressible case, decreases with time due to the

selective dissipation [4] by the numerical viscosity. The

relative constancy of the total kinetic energy shown in
Figure I and the selective decay of the enstrophy shown

in Figure 2 are similar to the results obtained for a

coherent initial seed perturbation [2] and indicate that

the evolution of the K-H instability in the present 2-D
MHD transverse configuration is a self-organization
process [5].

Figure 3 shows the spectral amplitudes of the

kinetic energy integrated across x versus the

wavenumber in the y direction at T = 0 (a) and Z = 600

(b), where T = tVo/(2a), the spectral amplitudes of the

enstrophy versus the wavenumber at T = O (c) and I =
600 (d), and the spectral amplitudes of the magnetic

energy integrated across.r versus the wavenumber at T

= 0 (e) and Z = 600 (0. The spectral amplitudes of the

integrated kinetic energy are normalizedby 2aps.The
spectral amplitudes of the enstrophy are normalized by
(V0/2a)2. The spectral amplitudes of the integrated
magnetic energy are normalized by apo-tBrz, where Bs is

the initial uniform magnetic field strength. In this figure
ft-1n is the wavenumber equal to kFcM/8, where ftp6s is

the wavenumber in the y direction of the linearly fastest
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Time ( x2alVo)

Fig. 2 Temporal evolutions of the total square vorticity
(enstrophy), the contribution of the compressible
term to the change of the enstrophy, and the
contribution of the baroclinic term to the change
of the enstrophy.
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Fig. 1 Temporal evolutions of the total energy, total
internal energy, total magnetic energy, and the
total kinetic energy in the whole simulation
region.
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Fig.3 The spectral amplitudes of the total kinetic energy versus the wavenumber at f = 0 (a) and f = 600 (b). the
enstrophy at f= 0 (c) and f= 600 (d), and the total magnetic energy at f= 0 (e) and f= 600 (f).
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growing mode. At T = 0, a random incompressible
velocity perturbation with a small amplitude was added

to the background flow velocity. Figures 3(a) and 3(c)

show that the spectral distributions of the integrated
kinetic energy and enstroph! at T = 0 are almost flat
(white noise). However, at T = 600, the spectral
distributions of the integrated kinetic energy, the
enstrophy, and the integrated magnetic energy become

almost continuous and are well represented by power

law distributions at klk^in 1 90. Irregular noise

components at large ft values (klk^in> 90) at T = 600
appeared because of the artificial viscosity added to the

system. The spectral peaks at k = k^in at ? = 600 of the

integrated kinetic energy, the enstrophy, and the
integrated magnetic energy occurred because of the

inverse cascade. The power law exponents of the
integrated kinetic energy, the enstrophy, and the
integrated magnetic energy at medium subrange of the

wavenumber from klk^in = l0 to 5O at T = 600 are equal

to -4.61, -2.58, and -4.60, respectively. Since the
enstrophy is an integral of the square of curl of v, the

observed fact that the power law exponent of the
enstrophy is nearly equal to the power law exponent of
the total kinetic energy plus 2 is reasonable. Notice that
the selective dissipation of the enstrophy and the relative

constancy of the total kinetic energy are caused by the

large difference of the power law exponents between the

spectra of the integrated kinetic energy and the
enstrophy.

Figures 4(a) and (c) show contours of vorticity at Z

= 70 and 7= 600. AtT =7O eieht vortices are observed

as predicted by the linear theory [3], but as a

consequence of successive pairings of vortices, a large

isolated vortex is formed inside the simulation region at

Z = 600. Figures 4(b) and (d) show electric current
vectors at T = 70 and Z = 600. It is seen in these panels

that an eddy current is associated with each flow vortex.
These eddy currents appear because of the
compressibility, i.e., the eddy current is equal to curl of
the z component of the magnetic field perturbation (fast

magnetosonic component of the magnetic field). These

cuffents are mainly carried by the inertia cunent [1-2].

4. Conclusion
By a 2-D MHD simulation of the K-H instability

starting from a random velocity perturbation it has been

established that the successive pairings of vortices
occurring in the nonlinear stage of the instability is a
self-organization process and the qualitative feature of
the self-organization process is rather insensitive to the

form of the initial seed perturbation. The present result,
if applied to the spatial growth of the instability along
the magnetopause, suggests that small-scale vortices
excited at the dayside magnetopause by the instability
evolve into global scale vortices in the tail of the
magnetosphere by the successive pairings of vortices.

Therefore, the self-organization process is responsible
for the creation of a large scale order (vortex) in the tail
of the magnetosphere.
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Fig.4 (a) Contours of the vorticity atT=70. (b) Electric currentvectors atT=70. (c) Contours of the vorticity at f = 600.
(d) Electric current vectors at f = 600.
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