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Abstract
This paper describes application of artificial neural networks to investigation of the self-organizing

phenomena in Plasma focus experiment, by means of analysis of magnetic field signals. We used back-

propagation neural network, trained as the nonlinear predictor, as a tool to prove deterministic nature of

plasma focus magnetic field signals.
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1. Introduction
This paper describes application of artificial neural

networks to analysis of experimental data in our Plasma

focus experiment.

The plasma focus chamber is the Mather type [l]
and consists of two brass coaxial electrodes. Outer

electrode consists of l8 cylindrically positioned brass

roads. Capacitor bank of 45 1tF is designed to be

charged up to 40 kV. It is realized by means of 9
parallel connected capacitors, each of 5 pF. Electrical

connections between capacitors themselves and between

capacitor bank and plasma focus chamber are made of
brass parallel plates.

Typical plasma focus current waveform is shown in

Fig. l. Values of circuit parameters imply that it is not

possible to have such disturbances of plasma focus

current, as oscillograms show. For measuring the plasma

focus current we used a probe, realized as a linear

section of the Rogowski coil, placed between the power

transmission plates. Because our current probe

essentially measures variations of magnetic field, we

concluded that disturbances seen on plasma focus

current waveform are electromagnetic interferences,

picked by current probe.

Results of all our experiments show that there is a

correlation between Electromagnetic Interference (EMI)

pulse added on plasma focus current signal and neutron

yield. We conducted the spectrum estimation of EMI
pulse added on plasma focus current and plasma focus

magnetic field signals [2]. Investigation of spectral

characteristics of plasma focus current and plasma focus
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Fig. 1 Plasma focus current signal.
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magnetic field signals revealed chaotic nature of
magnetic field signals and implied self-organizarion
phenomena in focused plasma. Analysis confirmed that
processes in plasma, which lead to nuclear prosesses,
should be analyzed from nonlinear dynamics point of
view. Because of highly pronounced nonlinear mode of
operation of plasma focus device, we used artificial
neural networks as a tool for analysis [3,4] and
modeling [4] of magnetic field signals.

In our earlier experiments [2] we used transducer
for measuring magnetic field identical to our current
probe, but placed outside of the power plates.
Interferences from both transducers were very similar,
confirming our hypothesis that disturbances seen on
plasma focus current waveform are electromagnetic
interferences. In this paper presented are results of our
most recent experiments. Magnetic field probe is located
at radial distance r = 30 mm from the outer electrode,
and at height z = 0 mm from the muzzle end.

2. Predictive Modeling of the Plasma Focus
Magnetic Field Signals Using Neural
Networks
Artificial neural networks have been successfully

applied to many areas of nuclear science [5]. Most of
the neural networks used in these applications are back-
propagation or radial-basis neural networks [5,6], which
associate relations between inputs and outputs by using
weight coefficients. In analysis, presented here, we used

back-propagation neural networks.
The main problem in analysis of plasma focus

magnetic field signals is the fact that they are non-
stationary, and of very short duration. Furthermore, they
are acquired in a very noisy conditions, including the 8

bit A/D converter noise. So, embedding dimension and
time delay, needed for attractor reconstruction [7] could
be determined only approximately, with the high
probability of the erroneous result. However, this is the
kind of a problem, where using of the neural networks is
most advantageous.

Neural networks provide a nonparametric approach
for the nonlinear estimation of data. During a training
session free parameters of neural network (synaptic
weights and biases) are adjusted in a systematic way as

to minimize a cost function. The neural network learns
from examples by constructing an input-output mapping
for the problem to be solved. In this paper, neural
network, trained as the nonlinear predictor [5,6], is used

as a tool to prove deterministic nature of the plasma
focus magnetic field signals.

For the predictive modeling of the plasma focus
magnetic field signals we used a multilayer perceptron
trained with the backpropagation algorithm. The general
structure of the neural network nonlinear predictor
model is shown in Fig. 2. Training of the neural network
is obtained by T position of a switch. A set of p samples
xn t, an-2, .., xn_, is applied to the input layer of the
network, and its synaptic weights are adjusted to
minimize the prediction error (i.e. the difference
between the actual sample value x, and the predicted
value, xflin a mean-square sense. The training set should
be large enough, and the training session has to be
continued untill synaptic weights of the network reach
steady-state values.

Predictive mode of operation is obtained by p
position of the switch. The network is initialized by
presenting it a set of samples x1, ..xp_v outside of the
training set. The resulting prediction is delayed by one
time unit and then fed back to the input.
Correspondingly, all samples are shifted by one time
unit, and the oldest sample;1 is dropped to make room
for the delayed prediction xl,. The new prediction is
made using the newly formed input to the neural
network, and the process is repeated until all the original
samples have been removed. After that, the neural
network should produce a time series that is
representative of the dynamics of the plasma focus
magnetic field signals.

input layer output layer

Fig. 2 Recursive predictor using neural network. x{n}
denotes discrete sequence, x, is the n'th element
of the sequence, xf is the predicted value of the
x^,
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3. Analysis of Experimental Data
Plasma focus magnetic field signal corresponding

to the pinch in deuterium is shown (solid curve) in Fig.

3. The signal is very similar in appearence to the

zoomed part of the interference seen on the plasma

focus current signal. Signals corresponding to the pinch

in hydrogen are of similar appearance, usually of
slightly smaller amplitude. The signals are acquired with

the sampling rate of lGSamle/s, so, in the following

text, one point of discrete sequence corresponds to I ns.

The size of the input layer of the neural network

used for the predictive modeling should be chosen in

accordance with the formula p 2 rDs, where Dp is the

embedding dimension and c is normalized time delay

[5]. It should be noted that, ifp is chosen much larger

than the tDE, the contaminating effects of additive noise

become more pronounced. Our initial estimation was D6

= 10 and ? = 5. However, because of uncertainty of
estimation of p, we varied parameters of the neural

network, i.e. number of neurons and number of layers,

seeking for the optimal configuration.

We obtained the best results using a neural network

which has 60 nodes in input layer. This confirms that

our initial estimations (Dr = 10 and 6 = 5), which

correspond to p - 50, are not far from correct. We tried

simulations with the one and with two hidden layers.

Better results were obtained with the two hidden layers.

Each of hidden layers has 100 neurons, which, again,

was determined by varying the number of neurons.

Predicted value of xn is obtained by a linear output
neuron.

It should be mentioned that convergence of the

training session was very dependent on the initial values

of synaptic weights. Also, the convergence of the

training session was sensitive to the choice of the

begining and the end of the sections of magnetic field
signals, used to form the training set. As the number of
"intuitive" modifications of the parameters of the neural

network in our simulation experiments slowly but

inevitably grew, it became obvious that in our future

simulation experiments the genetic algorithms should be

used for optimization of the structure of the neural

network predictors.

Figures 3 and4 show results ofrecursive prediction

of magnetic fields signals. We see on Fig. 3, (where p =
60), that for about the first 6O points, the predicted and

actual waveforms match fairly closely and thereafter

they diverge. Fig. 4 shows recursive prediction, when

number of input neurons is too small, so the model fails

to capture the dynamics of the signal (p = 40). This

results confirm that magnetic field signals are locally

predictable. The horizon of predictability for these

signals is about 60, which for used sampling time of I
ns corresponds to 60 ns. The same neural network was

trained on samples from signals corresponding to pinch

in deuterium and hydrogen. Predictions for both types of
signals are equally good, which shows that both signals

are of the same nature.

4. Conclusion
Our model using neural network trained as the

nonlinear predictor proved that magnetic field signals

corresponding to the pinch in deuterium and hydrogen

are deterministic, both of the same nature. For the used

sampling rate, the horizon of predictability for these

signals is about 60. In our future simulation
experiments, the genetic algorithms should be used for
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Fig. 3 Neural network prediction (dash-dotted curve) of
the plasma focus magnetic signal (solid curve),
using neural network with input layer of p = 60

nodes. First 60 points, used for initialization of the
predictor, are not shown.
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Fig. 4 Neural network prediction, using neural network
with too small input layer (p = 40).
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optimization of the structure of the neural network
predictors.
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