Diamagnetic Cavity of Plasma Clouds Expanding in Magnetized Media

ZAKHAROV Yuri P., MELEKHOV Alexandr V., ORISHICH Anatoli M.¹,

PONOMARENKO Arnold G., POSUKH Vitali G. and SHAIKHISLAMOV Ildar F.

Institute of Laser Physics, Novosibirsk, 630090, Russia ¹Novosibirsk State University and Institute of Theoretical & Applied Mechanics, Novosibirsk, 630090, Russia

(Received: 8 December 1998 / Accepted: 24 August 1999)

Abstract

Basic properties of the diamagnetic cavity created by spherically expanding clouds of exploding plasma in various magnetized media are studied as a result of the series experiments at large-scale "*KI*-*I*" facility with laser-produced plasma clouds of energy up to 300 J in the magnetic fields up to 2 kG. The cases of uniform and dipole fields were investigated to simulate an explosive-type cosmophysical phenomena and some schemes of the direct conversion of ICF-energy.

Keywords:

laser-produced plasma, magnetic fields, space and ICF-phenomena

1. Introduction

Diamagnetic cavity (DC) of exploding plasmas formed during their expansion into magnetic field plays a crucial role in the most key processes of interaction between plasma and surrounding magnetized media. Such plasmas with kinetic energy E_0 could be decelerated by magnetic pressure $B^2/8\pi$ and stopped in vacuum uniform magnetic field B_0 at the radius $R_b \approx$ $(3E_0/B_0^2)^{1/3}$, equal to the maximum cavity size R_{cm} in this case [1], namely due to DC creation and fields' exclusion by plasma. The unique parameters of "KI-1" facility allowed us to study the general 1D-properties of diamagnetic cavity in uniform magnetized media (MM) in the experiments [2,3] on spherically-symmetrical expansion of Laser-produced Plasma Clouds (LPC) with a number of ions N_i (of the mass-*m* and charge-*z*) under the condition of rather strong ion magnetization $\varepsilon_{\rm b} = R_{\rm b}/$ $R_{\rm b} \leq 1$ (for ion Larmor $R_{\rm h} = mcV_0/zeB_0$), which is needed for effective plasma-MM interaction and LPC deceleration at $R_{cm} \approx R_b$. Also an influence of ionized MM background and its density gradient $\nabla n_*(| | \text{ or } \perp \vec{B})$ have been investigated [4]. Some preliminary data on the 2D-structure of diamagnetic cavity in both uniform and dipole vacuum magnetic field B_d were obtained in a series of *«Cavity»* experiments [5-10] and here we will present their completed results in more details.

2. *«KI-1»* Laser Facility and Magnetic Field Measurements

The multi-purpose "KI-1" laser facility [2,11] consists of a large-scale (\emptyset 1.2m * 5m), high-vacuum interaction chamber and the system of CO₂-lasers with output energy ~ 1 kJ for producing quasi-spherical LPC with moderate velocity $V_0 \sim 100-200$ km/s, $m/z \sim 2-3$ amu and energy E_0 up to 300 J needed for simulation of space [2,6,11] and ICF [5,9] phenomena at small values of $\varepsilon_b \leq 0.3$. The optical system provides two-sided and multi-staged irradiation of small-size spherical or filament Nylon6 pellets. The chamber is supplied by

Corresponding author's e-mail: zakharov@plasma.nsk.ru

^{©1999} by The Japan Society of Plasma Science and Nuclear Fusion Research

sources of an axial uniform B_0 -field (up to 1 kG), dipole B_d -field (with $M \ge 10 \text{ MG}^* \text{ cm}^3$) and Θ -pinch type source of background plasma with n_* up to $5*10^{13}$ cm⁻³. The «*Cavity*» experiments were done with LPC ($E_0 \sim$ 10J) expanding into the dipole [6,10] and uniform [6-9] magnetic fields ($B_d = 1-2kG$ and $B_0 = 40-800G$) with $0.7 \le \varepsilon_{\rm b} \le 2$. For magnetic field measurements we used 3-component B-dote probe with high-frequency (50) MHz) coils of diameter 3-5mm with electrostatic [3,10] shielding, inserted into (5-7)mm-diam isolators. A set of such probes with digitalization system allow us to obtain the grid (~ 1 cm* 1 cm) of 2D-distributions of vectors $\Delta \vec{B}$ or $\vec{B} = \vec{B}^0 + \Delta \vec{B}$ and the levels of $\alpha = |\vec{B}|/B_0^0$ or $\alpha_d =$ $|\vec{B}(r)|/B_d^0(r)$ of the fields' exclusion inside of plasmas and of its disturbance $\beta = |\Delta \vec{B}| / B_0^0$ outside the LPC (for initial field \vec{B}^0). The suitability of the whole measurements' procedure was tested by the control of magnetic flux conservation and by comparison of the $\vec{\mu}_{d}$ -values of DC currents determined from the data on $\Delta \mathbf{B}$, obtained both inside and outside (see below) of LPC.

3. Diamagnetic Cavity in Vacuum Uniform Magnetic Field

According to the model [1] of plasma cloud as «superconducting sphere» (SSM) the magnetic field should be excluded down to $\mathbf{B} = 0$ inside of DC (and plasma) boundary \mathbf{R}_c and should have outside it the dipole-like disturbance $\Delta \vec{B} = \vec{b}_d$, which is described by the magnetic moment of DC currents $\vec{\mu}_d = -\vec{B}_0^0 \mathbf{R}_c^3/2$. So, along the $\vec{r} \perp \vec{B}_0^0$ direction ($\theta = \pi/2$) the field compression should be $\beta_{\perp} = 0.5(\mathbf{r}/\mathbf{R}_c)^3$ and in others $\beta = \beta_1(1 + 3\cos^2\theta)^{1/2}$. Earlier we have obtained for the first

Fig. 1 Diamagnetic cavity evolution in uniform B_0 -field.

time [3] a very thin width of skin-layer $\delta \approx 2c/\omega_{\rm ne}$ and $\beta_{\perp}^{\text{max}} \approx 0.5$ while in other experiments [12,13] it was not more than 0.3. In "Cavity" experiments a real spherical shape of DC (Fig. 1) was registered at early times of expansion as well as a whole \vec{b}_d -character of its $\beta(r, \theta)$ disturbances. It allowed us to develop contactless method [8] of «Remote Magnetic Probe» (RMP) to determine the size R_c of DC via measurements of RMPsignal $\beta_{\perp p}(r_p)$ at distances $r_p > R_c$ and calculation of R_c as $\mathbf{R}_{c} = \mathbf{r}_{p} (2\beta_{\perp p})^{1/3}$. The results of direct measurements of $R_{\rm cm}$ (for level $\alpha = 0.5$ at $r_{\rm p} < R_{\rm c}$) agree rather well with those of RMP (Fig. 2). But both of them become very different from the corresponding SSM's cavity data $(\mathbf{R_{cm}} = \mathbf{R_b})$ in the range of $\varepsilon_b \ge 1.5$ $(\mathbf{B}_0 \le 100$ G, $\mathbf{E}_0 \approx 8$ J). The reason is a fast B-field penetration into plasma [3] with very high effective collision frequency of electrons $v_{\text{eff}} \approx \xi \omega_{ce} (\xi \sim 0.3 \text{ in DC skin-layer})$ probably related to observed lower-hybrid turbulence (LHT). Due to this reason only at early-stage of DC expansion the law of $R_{c}(t)$ dynamics could coincide with the plasma radius R(t) and both of them could be described [9] in the range $\varepsilon_{\rm b} \leq 1$ by SSM deceleration law in the dimensionless [11] form:

$$\tau_{\mathbf{b}} = \int_{0}^{S_{\mathbf{b}}} d\mathbf{x} / \left(\sqrt{1 - 0.8 \mathbf{x}^{3}} - \sqrt{0.2 \mathbf{x}^{3}} \right) \text{ for}$$

$$s_{\mathbf{b}} = \mathbf{R} / \mathbf{R}_{\mathbf{b}} < 1 \text{ and } \tau_{\mathbf{b}} = t V_{0} / \mathbf{R}_{\mathbf{b}}$$
(1)

After the time $\tau_b \approx 1.5$ the boundaries of plasma and DC begin diverge as **R** goes over R_b (due to flute instability [2,12,13] of plasma) and as R_c stops at $R_{cm} \approx (0.8-0.9)$ R_b (due to δ -broadening [3,8,9]) and further collapses.

Fig. 2 Dependence of maximum cavity size R_{em} upon the plasma energy E_0 and various magnetic fields B.

Fig. 3 Dynamics of cavity boundary across B_0 -field.

The whole measured DC dynamics in the range $\varepsilon_b \ge 1$ could be roughly described by the usual field diffusion model with $\delta \approx \sqrt{c^2 t/4\pi\sigma}$ and $\sigma = n_e e^2/m_e v_{eff}$. Using the simple formulae [3] $R_c(t) = V_0 t \cdot \delta(t)$ we obtain a new, diffusion law of DC evolution:

$$s_{d} = \tau_{d} - 0.25 \tau_{d}^{2}$$

for $\tau_{d} = t V_{0} / R_{d} \le 1$ and $s_{d} = R_{c} / R_{d}$ (2)

That gives another maximum size of DC [3] $R_{cm} \approx R_d$ via a new scale of the problem $R_d = (3ezN_iV_0/$ $(16c\xi B_0)^{1/2} \equiv R_b / \sqrt{\varepsilon_b}$ and corresponding DC «lifetime» $T_{cd} \sim 3-4 R_d/V_0$ (determined only by turbulent diffusion). The formulae (2) agrees rather well with all data on DC dynamics at $\theta = \pi/2$ in «*Cavity*» experiment if one takes $\xi = 0.25$ (Fig. 3). But along $\theta =$ $\pi/4$ (Fig. 1) we had observed more faster field penetration which may be caused by the Hall-effect, that could appear namely here with the same $v_{\text{eff}} \approx \xi \omega_{\text{ce}}$. In general, the «lifetime» T_c of DC, defined in dimensionless form as $\gamma_{c} = T_{c}V_{0}/R_{b}$ and determined by the level $\alpha \approx 0.5$ of field penetration inside of $\mathbf{r} \approx \mathbf{R}_{cm}/2$ could be expressed for the diffusion regime (2) by the relation like $\gamma_{cd} \approx 3/\sqrt{\varepsilon_b}$. While for MHD-case in the range $\varepsilon_{\rm b} \ll 1$ we could use the scale of «Alfvenic» frequency [14] which describes the DC evolution as stopping (1) at R_b and following inward motion with Alfven velocity that gives us [7] the limiting value $\gamma_{cb} \approx$ 3. Therefore, in the intermediate range $\varepsilon_{\rm h} \approx 1$ the curves γ_{cb} and γ_{cd} should transit into each other. The *«KI-1»* results (see \bullet at Fig. 4) and other laboratory (\bigcirc) or space experiments (\bigstar) and computer simulations (\Box) could be described by such DC «lifetime» ($\gamma_{cb} \rightarrow \gamma_{cd}$) relation in a wide range of conditions of exploding

Fig. 4 Dimensionless scaling of the cavity «lifetime» in vacuum uniform magnetic field (N-data of H. Nakashima, 1998).

natural (or ICF) plasmas that provides the base to simulate them by LPC.

4. The Effects of Fields' Non-Uniformity and lonized Background

SSM's based analysis and calculations [5,15] of the plasma stopping radius $R_{m}(\theta)$ in the dipole field shows that in sectorial approximation it depends only from the parameter $\alpha = 3E_0R_0^3/M^2 = (R_b/R_0)^3$ and angle φ_{MR_0} (where \mathbf{R}_0 is the radius between dipole \mathbf{M} and explosion point) via unified equation $F(\varphi, R_m/R_0) = \alpha$. It gives R_m $= R_{\rm h}(B_{\rm d})$ for $\alpha \ll 1$ while $R_{\rm m} \rightarrow \infty$ (breakout of plasma into $-\nabla B_d^2$ direction) for $\alpha \ge 0.1$. In *«KI-1»* experiments [15] the main features of such plasma-dipole interaction were observed. Besides it, a «non-sectorial» effect of displacement of cavity (and plasma) as a whole were registered [6,10] at $\varphi = 30^{\circ}$ even for $\alpha < 0.1$. DC structure for this regime at $\varphi = 0$ (Fig. 5) could be roughly described by sectorial approximation as quasistationary ovoid shape (with $R_c \sim R_m \sim R_b$). It is valid only from the initial interaction time $t_1 \sim R_b/V_0 \sim 0.3 \ \mu s$ up to 1-1.5 μ s, but after that DC goes away with velocity rather close to its estimation $V_0 a^{1/3}$ via the action of $(\vec{\mu}_d \nabla) \vec{B}_d$ -force. In the case of plasma cloud expansion with super-Alfvenic velocity $V_0 \ge C_A = B_0/$ $(4\pi m \cdot n \cdot)^{1/2}$ into background plasma [2,4,11] two other effects and DC scales became important: its spatial [2,11,16] one $\tilde{R} = (3zN_i/4\pi n_*)^{1/3}$ and its T_c -value, reaching [7] the classical one $4\sigma_c R_c^2/\pi c^2$ (for Coulomb conductivity σ_c of background) due to suppression of

Fig. 5 Evolution of diamagnetic cavity in dipole field.

LHT and flutes . In such kind of experiments at **«KI-1»** on simulation of Super-Nova Remnants (SNR) dynamics at numbers $M_A = V_0/C_A \gg 1$ we had realized for the first time in laboratory [2] the plasma-plasma collisionless interaction at $R \sim \tilde{R}$ due to the action of curl electric fields. It is possible only under condition $\varepsilon_* = \sqrt{R_h R_{h*}/\tilde{R}} \le 1$ of both kinds of ions magnetization and the formation of DC with $R_c \approx \tilde{R}$ (and *B*-field compression at its edge, see region 1 at Fig. 6a). The measured DC structure is very similar to the observed [17] SNR one (Fig. 6b with region 2 of plasma compression) if expressed in corresponding dimensionless time $\tau_* = tV_0/\tilde{R} \approx 1.5-2$ which is $t = 2 \ \mu s$ for laboratory and 1500 years of SNR DA530 age, expanding with $V_0 \sim 5000$ km/s.

This work was supported by Russian Fund of Basic Research, Grant N98-02-17833.

References

- Yu.P. Raizer, J. Appl. Mech. Techn. Phys. N6, 19 (1963) - in Russian (see also NASA TN F-239: Washington DC, 1964, 20p.).
- [2] Yu.P. Zakharov, A.M. Orishish, A.G. Ponomarenko et al., ESA SP-251, Joint Varenna-Abastumany Intern. School & Workshop on Plasma Astrophysics, Noordvijk (ESA, 1986) p.37.
- [3] Yu.P. Zakharov, A.M Orishich, A.G Ponomarenko and V.G. Posukh, Sov. J. Plasma Phys. 12, 674 (1986).
- [4] V.M. Antonov, Yu.P. Zakharov, A.M Orishish et

Fig. 6 Simulation of Super-Nova diamagnetic cavity at presence of ionized background.

al., ESA SP-311, Varenna-Abastumany-ESA-Nagoya-Potsdam Workshop on Plasma Astrophysics, Noordvijk (ESA, 1990) p.189.

- [5] Yu.P. Zakharov, S.N. Nikitin, A.M. Orishich and A.G. Ponomarenko, Book of Abstracts of Fourth Intern. Toki Conf. on Fusion and Astrophysical Plasmas (Toki, 1992) p.47.
- [6] V.M. Antonov, Yu.V. Afonin, Yu.P Zakharov, A.M. Orishich *et al.*, UK Inst. of Physics Conf. Series N140, 167 (1995).
- [7] Yu.P Zakharov, A.V. Melekhov and A.G. Ponomarenko, Abstr. of IEEE Intern. Conf. on Plasma Science (Santa-Fe, 1994) p.92.
- [8] Yu.P Zakharov, A.V Melekhov, S.A Nikitin et al., Proc. 1996 Int. Conf. on Plasma Physics (Nagoya, 1997) v.2, p.1670.
- [9] Yu.P. Zakharov, A.G. Ponomarenko, H. Nakashima et al., Proc. 9th Int. Conf. on Emerging Nuclear Energy Systems, Ramat Gan (Dan Knassim Ltd, 1998) v.1, p.384.
- [10] I.F. Shaikhislamov, V.M. Antonov, Yu.P. Zakharov et al., J. Appl. Mech. Techn. Phys. 36, 488 (1995).
- [11] Yu.P. Zakharov, A.M. Orishich and A.G. Ponomarenko, Laser-Produced Plasma and Laboratory Simulation of Non-Stationary Space Processes (ITAM, Novosibirsk, 1988) p.220 - In Russian.
- [12] G. Dimonte and L.G. Wiley, Phys. Rev. Lett. 67, 1755 (1991).
- [13] B.H. Ripin et al., Phys. Fluids B5, 3491 (1993).
- [14] L.L. Lengyel, Phys. Fluids 31, 1577 (1988).
- [15] S.A. Nikitin and A.G. Ponomarenko, J. Appl. Mech. Techn. Phys. 34, 745 (1994).
- [16] T.P. Wright, Phys. Fluids 14, 1905 (1971).
- [17] D.K. Milne, Australian J. Phys. 40, 771 (1987).