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Abstract
Ion temperature gradient (ITG) modes in helical systems are studied. The gyrokinetic equation for

ions, the adiabatic assumption for electrons, and the charge neutrality condition are used with the

ballooning representation to derive a kinetic integral equation, which is solved numerically to obtain the

linear growth rate, the real frequency, and the eigenfunction of the ITG modes. Using a simple helical
field model, cases with L = 2 and 2 < M < 10 are investigated where L and M are the poloidal and

toroidal polarity numbers characterizing the helical field ripple, respectively. The effects of the toroidal
polarity number M on the dispersion relation and the mode structure of the ITG modes are clarified.
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1. lntroduction
The ion temperature gradient (ITG) modes are

electrostatic drift waves and have been studied as a

candidate to explain anomalous heat transport in high
temperature plasmas []. For toroidal systems such as

tokamaks and stellarators, the properties of the ITG
modes are significantly affected by the magnetic field
geometry through the VB and curvature drift motion of
particles.

For tokamaks, the magnetic field strength is given

by the large-aspect-ratio approximation as B/Bo = I -
t,cos0 where 0 is the poloidal angle and e, = r/R is the

inverse aspect ratio representing the toroidal ripple
where r and R denote the minor and major radii,
respectively. Many studies have been done on the ITG
modes in tokamaks 12,3,41. In this case,the ITG modes

are confined mostly in the outside of the torus, -nl2 < 0
< nl2, which corresponds to the bad curvature region.

For helical systems, the magnetic field strength is

approximately given by

Bl Bo= I - €tcos 0- en cos (Le - M€), (1)

where ( is the toroidal angle and the term with e6 in the

right-hand side represents the helical ripple with the

poloidal and toroidal polarity numbers denoted by Z, and

M, respectively. For example, we have L = 2 and M =
10 for LHD and L = 2 and M = 8 for CHS. Since the

helical magnetic ripple affects the particles' drift
motion, the properties of the ITG modes stability in
helical systems can be different from those in tokamaks

t5l.
In the present work, we investigate the properties

of the ITG modes for the helical systems with I = 2 and

2 < M < l0 which are compared to the tokamak case.

Especially, the effects of the toroidal polarity number M
on the dispersion relation and the mode structure of the

ITG modes are studied.

2. Kinetic ITG Mode Equation for Helical
Systems

Here we consider a high-temperature collisionless
plasma and assume that, in the presence of the

electrostatic perturbation @, the perturbed electron

@1999 by The Japan Society of Plasma

Science and Nuclear Fusion Research

105



Kuroda T. et al., Ion Temperature Gradient Modes in Helical Systems

density is described by the adiabatic (or Boltzmann)
response 6n.= (eQ/T")ns. The perturbed ion distribution
function is written as dl - -@QlT")nsF\a + h exp (-i k1
. p) where Fy: v-3t2 v7] exp 1-v2lvl-r1is the Maxwellian
distribution function, vri = (2Tilm) r/2 is the thermal

velocity for the ions with the mass m; and the

temperature Ti, P = b x vlQi @ = B/B) is the ion
gyroradius vector, and Oi = eBl(mic) is the ion
gyrofrequency. The non-adiabatic part of the distribution
function ft is determined by the linear gyrokinetic
equation

f: -iffi
^l ze ? ft,k't2t4l

Ja(l + a),t,L

t -trn,+n{k 
-!<')2
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with

f0K(k.k')=-il o*,dt
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I o 
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where l, - (a-,r)2 (3 e,lq)2lr"a, 0 = kli ka, 0' = k'13 ku
lo = 1o &&i/Kl + a)r"l) exp [-(t? + k'21)121" (l + a)),
k2L = kZ + k2, k'2L = kZ + k'2, and

a = | + i2(L, I r) t;ta-"t | @ - e')
x (st [(s + 1) (sin 0 - sin9')

-i10cos0- 0'cos9')

+ (Len | (L - Mq)) t{s/ (Z - Mq) + ll
x {sin ((L - Mde - Md)

- sin ((L - Mde'- Ma))l

- f{d cos ((L - Mq)O - ua)

- O'cos ((L - Mq)9'- Mo"))ll). (6)

Here the wavenumber variables ks, k, and k' are
normalized by p,' (p, = VzrJ*.Ja,) and e5 * rL is
used. The integral equation (4) with the boundary
conditions Q@ -+ l-) = 0 determines the complex-
valued eigenfrequency and eigenfunction of the ITG
mode for the helical system. If we put €l = 0, the inte-
gral ITG mode equation (4) with Eqs. (5) and (6)

reduces to the one given by Dong, et al. for the tokamak

case [3].

3. Numerical Results
Here we numerically solve the integral equation (4)

with the boundary conditions @(0 -+ +-; = 0 to obtain

the growth rate, the real frequency, and the
eigenfunction of the ITG mode for the L = 2 helical
systems with various M numbers. Since we are

concerned with the effects of the helical ripple, we
neglect the toroidal ripple by putting 6t = O (straight
helical system) for simplicity. Typical parameters used

here are q = 2, ke pri = 0.75, Ti/7"= l, L,lRo= O.2, L,
e6/r = O.2, and .i = -l (negative shear). We also treat a

single field line labelled by a= 0.

.#hl)]., (k''k'')'

Q)

Here ar is the frequency of the perturbation, arp = kt. vo

is the ion VB-curvature drift frequency, Js is the Bessel

function of order zero, and @* = a*r [l + r1i{(vlvfi2 -
3/2ll where 4r = dlnl ldlnns is the ratio of the ion
temperature gradient to the density gradient, (D*i= -T ,l
ro*" is the ion diamagnetic drift frequency, t": T"lTiis
the ratio between the electron and ion temperatures, rrl*e

= cksT.l(eBZ,) is the electron diamagnetic drift
frequency, Ln = -(dlnns/dr)-t is the density gradient

scale length, and /<e is the poloidal wavenumber.

We use the ballooning representation and write the

perpendicular wavenumber vector as k1 = ko (Y a +
?eYq) where 4 is the safety factor, a = ( - 40 is the

label for magnetic field line, and ko= -n represents the

toroidal mode number, which is related to the poloidal
wavenumber as ft6 - nqlr. ln the present work, we

assume that 0p- 0. We consider a large aspect-ratio and

low B toroidal system and use Eq. (l) to give the ion
VB-curvature drift frequency as

@o = 2(L,l r) o - i (v? + v2, | 21 v2r,

I e, {cos 0 + s0 sin 0} + len {cos (Le - M()
+ fd sin0 (L0 - M()ll, (3)

where .i = (rlq)dqldr is the shear parameter.

Neglecting the trapped ions, integrating the
gyrokinetic equation (2) along the field line with the

boundary conditions h(0 --> +*1 = 0, and substituting it
into the charge neutrality condition eQl7" = 6n"lns =
6ni/ns=-eQlTi+ I&vJo&e)h, we obtain the integral

equation which is written as

I ^ \ n+-

[' **lQro,=l +K&,k'\o&'). (4)\ 4i J-Jzn
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Figure I shows the normalized real frequency orl
6oe* and growth rate @ilo)"* of the ITG mode as a

function of M for 11i = 3, 4,6, 8. Other parameters used

here are the same as mentioned above. The real
frequencies obtained here are all negative, which
corresponds to the ion diamagnetic rotation. The growth
rate decreases with increasing M.

Corresponding to the cases for M =2,3,4,5,8, 10

in Fig. 1, the profiles of the eigenfunction and the

helical drift frequency - cos [(L - Mq)O] + .i 0 sin [(t -
Mq)01 in the covering space (&space) are plotted in Fig.

2. The regions where the helical drift frequency is
positive (negative) corresponds to bad (good) curvature.

As M increases, the eigenfunction p becomes more

rippled in the covering space and has a larger amplitude
in the good curvature region, which is related to the

reduction of the growth rate for larger M.

In the cases with large M llke M = 8 (CHS) and M

= 10 (LHD), a positive growth rate for the ITG mode

cannot be found for 4r < 4, with the other parameters as

given above. Unstable ITG modes are found for M = 8
and 10 with the very large temperature gradient (or very

small density gradient) tli = 6, 8 and thgy have more

negative frequencies and more rippled eigenfunctions as

shown in Figs. I and 2.

4. Conclusions
In the present paper, we have derived a kinetic

integral equation for the ITG modes in helical systems.

The ITG mode equation was numerically solved for a

straight herical system with the poloidal polarity number

L = 2, and the effects of the toroidal polarity number M
on the dispersion relation and the mode structure of the

ITG mode were studied. Field ripple with larger M
reduces the growth rate of the ITG mode. This
stabilizing effect is understood based on the structure of
the eigenfunciton along the field line as follows. As M
increases, the connection length between the good and

bad curvature regions becomes shorter and the

eigenfunction invades the good curvature region, which
leads to the stabilization.

In this work, the toroidal ripple in the magnetic

field strength, the nonadiabatic electrons, and the

trapped ions are not considered. These effects on the

properties of the ITG modes are studied as a future task.
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Fig. 1 The normalized (a) real frequency a,/a"- and (bl
groMh rate at'1a,. of the ITG mode as a function
of M tor various 4is. Here Q = 2, ke Pn = 0.75, TilT"
= 1, L,lRo = 0.2, L,en/r = 0.2, e, = 0, and 5 = -1.
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q=2, $--1, €n{.2,
T.|Ii=I, hpr=0.75.

Fig.2 The profiles of the eigenfunction @ and the helical drift frequency * cos[([ - Mql9l + 60 sin[([ -
Mql1lin the covering space (&spacel tor M =2,3,4,5,8, 10. Other parameters are the same as in Fig. 1.




