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Abstract
The longitudinal permittivity elements of a toroidal plasma with elliptic magnetic surfaces are

evaluated by solving the drift kinetic equation as a boundary-value problem for waves in the frequency
range much larger than the drift frequency. The quadratic corrections over the inverse tokamak aspect
ratio are taken into account in order to approximate the equilibrium magnetic field. The separate
contributions of untrapped, /-trapped and d-trapped particles to the longitudinal permittivity are written
by the summation of bounce-resonant terms including the well-known plasma dispersion function.
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1. lntroduction
The problems of plasma heating and current drive

in large-size tokamaks by using the radio-frequency
waves have stimulated renewed interest in the study of
the dielectric properties of a magnetized toroidal plasma

taking into account the ellipticity/triangularity of the
magnetic surfaces and the bounce-resonant wave-
particle interactions there. In this paper, we evaluate the

longitudinal permittivity elements of a collisionless
toroidal plasma with elliptic magnetic surfaces. In
contrast to Refs. [1-3] related to it, we describe the

untrapped and three groups of trapped particles in the
general case, when all these particle groups exist at the

considered magnetic surfaces, accounting the quadratic

corrections over the inverse tokamak aspect ratio. To
solve the drift kinetic equation for the perturbed
distribution function/=/( p, 0, Ittr, ur) exp(-iat + inQ)
of charged particles we introduce the new variables (r,
0') instead of the quasi-toroidal coordinates (p, 0)

r=9

and the "magnetic moment" It = tin'y,[HTiETlH
instead of the pitch-angle 7(u11 = u cos% ur = D sin/).
Here, Hqs and 11e6 are the toroidal and poloidal
projections of an equilibrium magnetic field, trl, for a

given magnetic surface, at the points 0 = +n12. The
modulus of .El is

H={Ir'ro*rI'* ^n + lco* g
I +€cos0'

(, -,"o"e'*-et "or'o'*4.or' 
o"l .

\ l+e 2 
J

Here

E=L. o =e!!.R-hs

^=4(4- 
r'l=--e' f 

r:-
\4' J S'+e' \o'

, Hen
lls=---. llO=

1/ Hro+Hto

')
Hro

a2.-; slll
b" where R is the major tokamak radius; b and a are tho
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major and minor semiaxes of the elliptic cross-section of

the external magnetic surface. In this model, all
magnetic surfaces are similar each other with the same

elongation equal to b/a. Assuming that € and L ate

small, the perturbed distribution function can be

presented in the form

f<h=1f "1flexpIirq 
rin e(e +("o,e)],

t 'l
where 6 = 0'+ 0.125), sin 20' and ( = 0.25h - O.5*lQ
+ €).

As a result, for f" we have

a7
ff+iQ,t017,=Q(6),

where

o,(n)=nslt.99]'\ t+eJ
sa (l +0.251)

(1)

4u@'
eE,(O\ / " \QQ)=# lr **lknT \ 4/
exp l- inq sin 4 (s + ( cos Dl Fo ,

v=L++, ko=*, Fo= +"^of-g')2 l+e' " (ttu+)'' -\ u+J

The steady-state distribution function Fs is given as

maxwellian, where Ns is the particle density, and Dt =

'ltTlM is the thermal velocity of particles with
temperature ? and mass M. By indexes s = +l forf, we

distinguish the perturbed distribution functions over
positive and negative values of parallel velocity

D', =su@
relative to II. After solving Eq. (1), the longitudinal
component of the current density j1 = i.H/H can be

expressed by

j u(0)= n,
(1-ecos0+vcos'6)-'

3l f6 r{l-rcosd+vcoszd)-r _

)r I u'| f ,(0, p, u)dpdu Q)
'JOJO

Depending on the parameters p and 6 the phase volume

of plasma particles should be split in the phase volumes

of untrapped and trapped particles. This separation can

be done by the condition u1 (#, 6) = 0. In contrast to the

tokamak with circular magnetic surfaces, for a plasma

torus with elliptic magnetic surfaces, there is possible

the existence [-3] of two additional groups of the

trapped particles at such magnetic surfaces where e < i,.

And really, p(6) as the solution of u11 (1r, 6) = 0, in the

general case, has five extremums where 0 = +Tt, 0,

* arccos (e/L). To have the full physical picture, we

derive the contributions of all four groups of plasma

particles to the longitudinal permittivity of a toroidal

plasma with elliptic magnetic surfaces. As a result, the

phase volumes of the different groups of plasma

particles are defined by the following inequalities:

o<p<1t", -n<6<n
-for untrapped particles (zone l);

lt"3 F3 N,, -0.< 6 < e.

-for t-trapped Particles, (zone 2);

It,3 tt3 Fd, -8< 0 < -0o

-for d-trapped particles, (zone 3);

Fr3Falta, ed<e<0,
-for d-trapped particles, (zone 4),

where the reflection points Q and 0a for the trapped

particles are defined by the relationships

t
coS o, = *lt -

cosgn=t[,*- ,rl
I +t +€

"*rl*nsin 
0 (e + (co, e)]

IIu= lrt =l+Qe+0.51)(1+e)' I +0.51. (1 + e) '

z11l +€)+4e2
Fa=

210+e)+3e2-e3
The solution of Eq. (1) can be found by the specific
boundary condition for the trapped and untrapped

particles. For untrapped particles (zone l), we use the

periodicity of fr over 9. The boundary condition for the

t-trapped (zone 2) and d-trapped (zones 3 and 4)

particles is the continuity of f" at the corresponding

stop-points (local mirrors or reflection points) where the

parallel velocity is equal to zero. As usual, the equality

of denomenators of l, to zero gives us the bounce

resonance conditions of an effective wave-particle

interactions. Using Eq. (2), it is possible to evaluate the

separate contributions of all groups of plasma particles

to the longitudinal current density component.

2. Longitudinal Permittivity Elements
The dielectric tensor elements can be derived after

the Fourier expansions of current density and electric
field over the angle 6: 

+_
j,,(4(l +ecos 0-vcos20)= 2 if'exp(m0),
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Thus, the harmonics 7,(i) and nfi'' are connected by the longitudinal permittivity
longitudinal permittivity elements:

# iir'= E €tr'n'E\n')
m =-6

si/t
= L letr;tr' +€tr;i,' +eff;!' I E',i'
^'l*\ 

"' "'" I

where sft'f' , ef'f' , and ei:T'are the separate
contributions of untrapped, t-trapped and d-trapped
particles, respectively, to the longitudinal permittivity
(the details see in Refs. [,3]).

The contribution of untrapped particles to the

longitudinal permittivity is

^ -,. +q fltuzai. s l-'(t +0.51)K(rf)
cll-u = ^ Ll I

k'zou'zrnt n Jo fu+nq+p)2

n, (0) = 
^E *Ef' 

) exp i*' h,

Ir 
* 2"3 + 2i tft u)w(u,lf e; o;* 

^ - ^ dp, (3)

Here, we used the following definitions:

o(t +0.25L)^/2rcrc67
uo=

k olm + nq * p lr, n fe2tt2 + 4vtt (l - p)lo"

^ 4EN^e2A)'-=:,
M

2l e'p' + 4vp (l - tt)

I - (l - v7 1t + 
^f 

ert a avlt 11 a1'

Q+F)cn2(r,w)-l
l+Bcn21rc,w)

tr (1+0.s2)K(rf)Bi Bi
;J " P" p2 ferp, + 4vlt (l - lt))" 

"fr+24+zind,w(u,)fdu, @)

2{iot(t +0.2s1)K@4)
Dr=

kopDr n f€tp' + 4vlt (l - lt)lt'o 
'

"*p t zK\!!ft - 
2i en + nq) y, (rc, w)

2.+ B7dn2 (K-1, w)- I
| + P dnz (rc-l, w)

a(r +0.25D{-zrcx1r1

elliptic functions [4,5].
The contribution of r-trapped particles

is

to the

Bi6t=

IK(K\ nfta
Ai Qc ) =J 

",",.*o 
I i r(")- - 

2i Qn + nq) fi, (r, w)

+ 2inq \r,(r, w)l E#t# 0,,

n- 4v
' -, -zv + 1f e\ +v 1t - py 1t'

K6\=l''' -4-Jo /r-"ri,t'a'

r,(r,w)=arctan l+g94.| -3 ,,tuut.-' " 
\tmf cn$,fi) 2KG)'

sn (r, w) cn (( w)
(,(K,w)=tl | + P |. B r"\.)r)

+2inq(, (4 w)l
cn (r-r, w)dw

| + p dn2(K t, w)

sn (K-r, w)dn (r-', w)

| + B dn2 (r-t, w)

['. 
t

The contribution of d-trapped particles to the

longitudinal perminivity is

. 2a?"(r +o.il.)
eii:! = "ki u2, n3

,4 * l,i.' lt .2r'ze +2itrt)wosl,
P=t p- Jltt L

K2K(K)lr; @;)" . r; (r;).]
dtt, (5)

V t - tt - v) tt+ tl ertP + 4vtt (l - tD

ttiEV,=Y rc

where

['. 
t

k o p ur n let p' + 4vtt (l - p)l''o '

exp iffi-iQn +nq) )6a (r,vv)

_ /5 cn (r, w) sn (r. w)
+inqt{4 (r. w) I 

d̂+dn2 (r, w)

oi<4= 
[-"1.,

+

dw,
where sn(r, w), cn(r, w), dn(r, w) are the Jacobi
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2v-€-tr€\4v(l-pYp
2v+e+ e2 + 4v (I - lt)ltl

Ian',". 'r- d]
Xog.w)=arccosl------------]:----]-------:-'-l .

ldn'(r. w)+ al

znfd dn{c r; [ -dn'(rc,r)- d]
U/u(K.wl= lt+(-l.' 

dn2 tr. wl+ d | 
- 

dn'1r. w)+ dl

The phase coefficients Atr,Btr,and Di do not
depend on the wave frequency that allowed us to obtain
the final expressions for eff.'i' , eff;i' and ci|!' by the
plasma dispersion function W(z) = exp(-221 1t + 1Zit"[i1
lI explt\at]. As a result, the bounce-resonant
conditions can be presented by:

up = | for the untrapped particles, where the numbers of
bounce resonances are p - 0, +1, +2, ...;

up = l, p = 1,2,3, ... for the t-trapped particles;

and r, - l, p = l,2,3, ... for the d-trapped particles.

3. Gonclusions
The basic feature of elongated tokamaks is a

possible existence of three groups of the trapped
particles. Together with the usual (for tokamaks with
circular magnetic surfaces) untrapped and r-trapped
particles, two additional groups of d-trapped particles
can appear at such elliptic magnetic surfaces where 2 >
g. In other terms this criterion can be rewritten as

b/a>
The d-particles are located near the points 0 = * arccos
(e l),). The trajectories of untrapped, r-trapped and d-
trapped particles are entirely different. The energetic d-
particles (e.g., the fusion-born alpha particles) can excite
the toroidicity-induced [6] and ellipticity-induced [7]
Alfv6n eigenmodes. Moreover, these new nature
particles can affect substantially the current drive
generation and transport processes. Of course, choosing
the level and profile of an equilibrium current (or by
given the suitable radial structure of a tokamak safety
factor, q), it is possible to realize the experimental
regimes when the d-particles are absent into the plasma.

As easily to see, the criterion I > e is not satisfied in
tokamaks with small elongation bla < 2 and q > 1. This
means that there are no d-trapped particles in the JET
(as well ITER) plasmas.

The bounce resonance conditions for each of four
groups of plasma particles (both the electrons and ions)
are derived by solving the drift-kinetic equation. The

longirLrdinal permittivity elements, Eqs. (3)-(5), are valid
in the wide range of wave frequencies, wave numbers,

and plasma parameters in the tokamaks with an elliptic
cross-section of the magnetic surfaces.

Since the drift kinetic equation is solved as a

boundary-value problem, the eff.'i.,.0 -elements are

suitable to study the wave processes with a regular
frequency such as the wave propagation, plasma heating

and current drive, when the wave frequency is given by
the antenna./generator system. The expressions (3)-(4)

have a natural limit to the corresponding results [3,5] for
plasmas with circular magnetic surfaces if b = a and v, (
+ 0. Note, the quadratic corrections over t = rlR are

important to describe more correctly the finite-e effects
in tokamaks with alR - l/3 and b > a. Tbe concrete

computer calculations of eii'''-.t.-ents evaluated in
this paper have been done in Ref. [8], where the kinetic
Alfv6n wave dissipation (by the trapped/untrapped

electrons) is analyzed in an elongated tokamak with the

main JET-parameters.
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