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Abstract
A plasma flow induces mixing of magnetic flux, and the length-scale cascades toward a small scale,

resulting in amplification of the magnetic field. If the enhanced Lorentz force becomes to dominate the

dynamics, its back-reaction should be taken into account. Once a Beltrami field is generated, it can stay

stable and stationary against the stretching effect of the plasma flow. The Beltrami condition, which reads

as the force-free condition, imposes a lower bound for the length-scale, avoiding the scale reduction

down to the resistive regime. A statistical model of current filaments accounts well for the spectral
structure of intermittent fluctuations of local currents in experiments.
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1. Introduction
The Beltrami condition describes the alignment of

the vector field and its own vorticity. In many different
convective nonlinear systems, the Beltrami condition
plays an important role in characteriztng self-organized

structures [1,2]. A plasma flow induces mixing of
magnetic flux, and the length-scale cascades toward a

small scale, resulting in amplification of the magnetic

field. If the enhanced Lorentz force becomes to
dominate the dynamics, its back-reaction must be taken

into account. The Beltrami condition, which reads as the

magnetic force-free condition, must apply to slow
motion of a strongly magnetized plasma, i.e., the
magnetic field B must satisfy V x B = ,1,-B. When ,1, is a

constant over a localized current, this relation imposes a

lower bound for the length-scale. This bound avoids

scale reduction down to the resistive regime, and

extends the life-time of the amplified magnetic field [3].
In laboratory experiments, we observe that local currents

in a turbulent plasma fluctuate intermittently, suggesting

that the current density has a strongly inhomogeneous

distribution. A statistical model of current filaments

accounts well for the spectral structure of the

fluctuations. We consider a Boltzmann distribution of
the size of the filaments that maximizes the entropy for
an ensemble defined by the total current. An interesting

assertion is that the time series produced by a random-

motion model of such filaments generates a power-law
spectra which agrees well with the observation [4].

2. Beltrami Condition
Due to the complex mixing process, the current

tends to concentrate in small volumes, which may be

disconnected. When the sectional length-scale of such a

volume becomes small enough, the Lorentz force
dominates. We consider such a "clump" of the magnetic

field that is created by the kinematic dynamo process.

For an arbitrary shape of the clump, the Beltrami
condition V x B = ),8 can be satisfied with a constant ,1,

such that l-r: < A < p1, where p* are the eigenvalues of
the self-adjoint part of the curl operator in the domain O
of the clump [5]. This O is assumed to be multiply
connected (genus ge4 1) and bounded. The eigenvalues
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are shown to be countable, and are numbered as ...< /r_

z3F:<0<p' < 1t23.... Themagnitudesof p*areof
the order of the cross-sectional length scale of O. The
force-free magnetic clump in the range of 1t_, < ), < 1t,
is stable against internal kink modes, while the stability
of external modes (deformation of O) depends on
exterior conditions. Once it is created, the internal
magnetic field is maximally smooth, and no smaller
internal structure can develop in the clump.

3. Statistical Model of Filaments
While each filamentary flux tube, such as a

Beltrami field, can be locally stable, their movement and

mutual interactions are very complicated, and hence,

they invoke a statistical mechanical treatment. Let us

consider a system of current filaments. Each filament is
denoted by an index m (m - l, ..., N; N is the total
number of filaments). We specify the current density ./-
on each filament. We can invoke the analogy of the

standard statistical mechanics of particles, wherc J^
parallels the energy level of the eigenstate m. The cross

section o- of the filament la is the statistical variable of
the present model (o. may be regarded as the number of
particles allocated to the eigenstate m). Each filament
has the current of I^= J.o^.The total current is given

by 1 = DItI^.A micro-state is characterized by
specifying (, = {or, oz, ..', oul. The probability of a

micro-state I is denoted by p( l.).
The expectation value of the current is given by (1)

= 2 tp( (, ) I( (, ), where /( I ) is the current of the
micro-state I . Maximizing the Shannon entropy ^S =
-2 tp( (, ) ln p( I ) for the above-mentioned canonical
ensemble, we obtain p( | ) = exp(-9l^J^o^)/2, where
Z = exp(a) =2 texpGFI( { )) z is the partition function
of the canonical distribution.

We assume that the probability for a filament "la"
to have a cross-section on (denoted by p^(o^)) is
independent to the all other filaments. Then, p(os oz,
...,o.v) can be broken down into the simple product of
p^(o) (m = 1,..., N), and we obtain the "Boltzmann
distribution"
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Fig. 1 Power spectrum ofi(f) produced by the statistical
model, in comparison with the experimental
spectrum. We apply different normalizations to
both spectra to plot them at different vertical
positions.

o.). The probability of measuring a filament m, at a

fixed observation point, is proportionalto o^.
Figure I shows the frequency spectrum ofj(r)

generated by the theory, in comparison with the
experimental spectrum. We observe that the theoretical
spectrum agrees well with the experimental one. The
spectrum ofj(t) has two distinct frequency ranges; the

spectrum in the low frequency range (f < f" = 20kHz) is
"white", while in the high frequency range (/>f,), the

spectrum is the lf spectrum. In the theory, the critical
frequencyf, is given by f" = l/(lu\t.) = ul(2np"), where
p" is the average radius, A/" is the average duration of a

filament, and u is the average speed (random walk) of
filaments. The two different frequency ranges of the

spectrum can be explained as follows. In a long time
scale ( | tt - bl > N), j(t) and j(t) come from different
randomly-selected filaments. Therefore, we obtain a

white spectrum. Agreement of our theoretical result with
the experimental spectrum in this frequency range
justifies our assumption of random movement of
filaments.
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Using the probability distribution (l), we generate

the time series of the current density j(r) that is
measured at a fixed position. Note that the probability of
measuring the filament m differs from p.(o.) (the
probability of the filament m to have a cross section
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