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Abstract
We study a nonlinear three-wave interaction in an open dissipative model of stimulated Raman

backscattering in a plasma. A hybrid kinetic-fluid scheme is proposed to include anomalous kinetic
dissipation due to electron trapping and plasma wave breaking. We simulate a finite plasma with open

boundaries and vary a transport parameter to examine a route to spatio-temporal complexity. An interplay
between self-organization at micro (kinetic) and macro (wave/fluid) scales is revealed through quasi-
periodic and intermittent evolution of dynamical variables, dissipative structures and related entropy
rates. At this point, a consistency with a general scenario of self-organization is found.
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1. Introduction
Self-organization (SO) is a generic process which

describes a spontaneous formation of an ordered
structure in a nonlinear far-from equilibrium system.

Energy pumping, nonlinear instability, entropy
production and expulsion are key governing processes.

In this paper, an attempt is made to study kinetic self-
organization [] through a process of stimulated Raman

backscattering (SRBS) in an underdense plasma [2].
Stimulated Raman scattering is a resonant three-wave
(3WI) parametric instability which corresponds to the

decay of an incident electromagnetic pump wave into a

scattered wave plus an electron plasma wave (epw).

Important effects, especially in the context of laser

fusion schemes [3], are input energy loss, plasma
heating and generation of suprathermal (hot) electrons.

To emulate these effects we apply a hybrid three-wave
phenomenological kinetic model of SRBS, proposed by

Skori6 et al. l4l.

2. A Hybrid Model
The basic equations are coupled three-wave

equations for slowly varying complex amplitudes of a

pump (as), backscattered wave (a1) and epw (a),
respectively:

don ,, don-:: + % --: =- a,a, .dt " c,x

da, .. do,

dt -'t Ai =-ooo' '

do, -. do, I t2 ^)- +U -a! + fa, + iolarl- a, = P'sarai . (l)
dt -ox

Parameter f is composed of collisional damping (f|1),
'linear' (Landau) damping by hot - resonant electrons
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(yr- n,), where nr,(t) stands for spatially averaged hot

electron density:

dnn(t) no(L, t\n*"i'tt'" ^ , vne)nnft)

? =T ) f,dv -a'!::'--:!::-: , Q)
un- vo (L. r)

(n6 is bulk electron density,/6 is bulk distribution func-

tion, v5 is velocity of hot electrons which equals the epw

phase velocity, vo is trapping velocity and a is particle

transport parameter) and nonlinear damping due to

trapped resonant bulk electrons (in the thermal

Maxwellian):

mn,(L.r, 
un*uF(L'')

2y^tw(t)=':::!:::t I ur.fr(y)dy, (3)
2L ,n-!,,r.,,

where IV(r) is spatially averaged epw energy.

Open boundaries and re-emittance of fresh ambient

electrons [5] is assumed. The particles (bulk and hot

electrons) and energy (wave and particle) are being

exchanged between a plasma and an environment

through open boundaries with a conservation of particle

number and total energy in the system. Accordingly,
heat balance equatio (effect of plasma heating; E,,, En

and @,o, + 4 + 4, + @o are the average bulk and hot

electron energy or corresponding energy flux of the

bulk, hot and return ambient electrons, respectively)
takes form:

dw(t)
dt

d (4(t) + EhQ)) +k' Q.,IL @)

3. Dissipative Structures and Entropy Rate
The simulation is performed via the central-

difference numerical code [2], where the simulation
parameters dtai ns = 0.1 n.,, Zro = 0.5 keV and pump

intensity, Fo = 0.0253. Openness of a system, ft (0-l)
was chosen as a bifurcation parameter. Self-organization

in strongly nonlinear far-from-equilibrium systems leads

to a creation of ordered states that reflect an interaction

of a given system with its environment, These novel

dynamical structures or patterns, named dissipative
structures to stress the crucial role of dissipation in their

creation, have become a central theme of the science of
complexity [1,2,4]. On the other hand, there is a

fundamental role of the entropy, in particular, the rate of
entropy change in an open system. The rate of entropy

production and its removal basically governs self-

organization features of a system.

First, we focus at self-organized dissipative
structures developed at the macro-scale. Indeed, in our

model, basic wave and fluid density variables were

assumed to vary slowly in space-time. Therefore, we

expect that original spatio-temporal profiles, found in
simulations, should correspond to large dissipative
structures, self-organized at macro-scale levels. As an

illustration, we plot the plasma wave profiles (Fig. l), in
particular, to reveal a genuine spatio-temporal nature of
an intermittent regime as compared to regular dynamical

regimes ofthe steady-state and quasi-periodic type [3,4].
Spatio-temporal complexity of quasi-steady and

travelling wave patterns with regular and chaotic
features is found in different states of self-organization.

Further, in Fig. 2 we plot the entropy rate dS(t)/dt

in time together with a spatio-temporal profile of the

scattered wave energy. For an intermittent regime,

(b) k - 0.06

dl Fig. 1 Spatio-temporal profiles of the electron plasma
wave for varying transport parameter k values.
Different dissipative structures are seen on the
route to complexity, from the steady-state via
quasi-periodic to intermittent regimes.

Fig. 2 Intermittent dissipative backscattered wave
structures versus the corresponding entropy rate
in time. Positive entropy jump coincides with an
onset of chaos, while a negative burst indicates a

transition from a chaotic to a laminar phase of SO
at macro-scales.
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featuring an interchange between chaotic and laminar
phases, we find a clear evidence of structural transitions
conesponding to the maximum (positive) and minimum
(negative) entropy rate. As a striking example of self-
organization in an open system we find a rapid entropy
jump which coincides with an onset ,;i a chaotic phase.

Subsequent anomalous dissipation and entropy growth is
halted by a sudden entropy expulsion into the
environment. Negative burst in entropy rate indicates a

bifurcation from a chaotic, back to a laminar quasi-
periodic phase. Intervals of near zero entropy rate during
a laminar phase, mean a net balance between the
entropy production and its expulsion. This appears to be

an example of a stationary nonequilibrium state possibly
realized in a strongly nonlinear open system Il].

A hybrid nature of our model allows us to recover
kinetic properties of self-organization. In Fig. 3 we see a

three-dimensional view of the electron velocity
distribution in time for different saturated Raman
regimes, as indicated by values of parameter ft. Kinetic
self-organization of varying complexity is revealed in
thermal and suprathermal (hot) regions of the electron
distribution.

4. Summary
In summary, we believe that our findings appear to

be a first indication of a generic intermittent scenario in
a kinetic self-organization of anomalous Raman
instability. At this point we may note that one is able to
claim a consistency with the working hypothesis and
general scenario of self-organization in plasmas [1,4].
As a further step, we expect an important justification of
our hybrid-modeling of saturated Raman complexity by
the novel open boundary particle simulation code,

currently under development [5]. As an early
illustration, we show in Fig. 4b, recent particle-in-cell
simulation data for a model of an isolated plasma slab in
a vacuum [6]. For same plasma parameters, particle
simulations (Fig. 4b) show an evident support of above
Raman reflectivity pattern, obtained for a closed (/< =
0.007) system (Fig. 4a).
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Fig. 3 Three-dimensional view of the electron velocity
distribution in time for different saturated Raman
regimes, as indicated by values of parameter k
Micro-kinetic scale self-organization of varying
complexity is revealed in both thermal and
suprathermal (hot) regions of the electron
distribution.
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Fig. 4 Raman reflectivity versus time [aro-'l for k= 0.007
from the hybrid model simulation (a) and the
corresponding data (b) obtained by a 1f relativistic
particle-in-cell code (after Miyamoto ef a/. [6]). The
pump strength was Bo = 0.0253 and the plasma
parameters: no = 0.1 I1o, T. = 0.5 keV, L = 100 cl@o.
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