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Abstract
Nonlinear behaviors of electron drift orbits are investigated by a simple mapping model in helical

systems. With a small dissipation, the phase portrait of Poincare mapping change significantly as com-
pare to that of area preserving one. Global stability of 280 x 280 orbits are graphically investigated by
calculating the Lyapunov exponent for each orbit, and found that the effect of dissipations change little
the global stability characteristics. The dressed winding number of orbits shows clearly the mode locking
phenomenon. In the /:1 helical configuration, the 1/f-noise spectrum is observed.
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1. Introduction
The nonlinear mapping in the area preserving sys-

tem has been studied completely separately from the
dissipative system, because chaotic behaviors of these
systems are entirely different, i.e., the area preserving

system may show ergodic behavior while the dissipative
system may tend to a strange attractor. In numerical
evaluation of orbits in the area preserving Hamiltonian
system, therefore, the Jacobian of the transformation
must precisely be kept unity, otherwise the system may
change to a dissipative system. In actual physical sys-

tems, however in any case, we have more or less dissi-
pations.

The purpose of this paper is to study the effect of
dissipation on the drift orbit mapping in helical systems.

Based on the drift approximation, the dissipation is in-
troduced through generalized Ohm's law. Since our
mapping equations are applicable to the dissipative and
area preserving systems by changing the particle dissi-
pation, we can study how orbits may change by chang-
ing from the area preserving system to the dissipative
system. By performing mappings by computer, it will be
shown in section 3 that for small dissipations orbit

points stay in certain annular region instead of tending
to a strange attractor. By evaluating the Lyapunov ex-
ponent for 280 X 280 orbits, it will be also shown that
the global stability characteristics of helical configura-
tions change little, although the phase space structure
of mappings change significantly with a small dissipa-
tion.

2. DriftOrbit Model
We start with the particle guiding center velocity

vo which can be expressed by the sum:

vo: vr* v, (1)

The parallel component along the magnetic field
can be expressed by r,, : v'D with FB/ B. The perpen-
dicular component yr may involve the E X B drift and
the curvature drift components. We introduce here an-
other perpendicular component from generalized

Ohm's law in the form

ro: -D"(L + r)V (z)

where D" is electron diffusion coefficient and r: T./ T,
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is the electron temperature to ion temperature ratio,

and other notations are standard.

Since vo is a fluid velocity, we consider vc as an

averaged velocity over the Maxwellian plasma and

study the flow lines of "averaged particle (electron)"

with thermal velocity u". We assume the parallel motion

along the magnetic field lines gives the principal term

and vo as a weak perturbation.

In the cylindrical coordinate system (r, 0, z), each

component of the velocity can be written in the from

,,:t: vrb,-D"(r + r\L

,u: r#: vnbe* vr * v.

vz: vnbz (5)

where v" and r" are the ExB and curvature drift veloc-

ity components, respectively.

The curvature drift velocity z" is replaced by the

diamagnetic drift velocity when we consider from the

fluid view point, because r" is canceled out by the mag-

netization effect[1]. The remaining diamagnetic drift
velocity has, however, no radial component and does

not contribute to the dissipative term in our model.

Each component of the helical magnetic field is
given by[2]

B,: hsinu ,

Be: Bnt hucosu

Br: Bo (1 - elcosa)

where ft. : lB. I't(kr), la: IRI(kr), en: ll1(kr), Iris
the modified Bessel function and u : rc - kz. Integrat-

ing Eqs. (3) and (4) for one period along the toroidal
direction making use of v, dt : dz, we have the dis-

placements

r,r:f bdz- fa tr + i# (e)

approximation, from Eq.(9), we have a mapping equa-

tion for the radial coordinate:

x*rr : (1 - ca) x, * K sin/0, (1 1)

where x: r/awith a being the helical conductor radius.

Introducing Eq.(7) into the first term in Eq.(10)'

we have the rotational transform, I of magnetic field

lines. We assume here the first term is much larger than

the contribution from the drift motions in the second

term. In this case, we have mapping equation for the

poloidal angle:

0,+r:0,*(x,*r) (12)

where r is assumed to be a function of x*, instead of xn

in order to satisfy the area conservation when cu:O. In

this case. the Jacobian of the two-dimensional transfor-

mation is given by J: l0 (xnr, 0*r)/ 0(x* 0^) l: t -
cd.

The mapping given by Eqs. (11) and (12) may be

too simple to see characteristics of a realistic toroidal-

helical configuration. Even in this simplest model, we

find new phenomena as we shall see. To investigate a

new phenomenon, we must employ as simple model as

possible, and determine what is the cause of the phe-

nomenon. Application to realistic models including the

grad-B and curvature drifts may be straightforward.

We express the rotational transform in term of the

shear parameter: r(x) : ro(L*s x) with s: r t'/ t and %

being the rotational transform at x:0. Near the singu-

larity of the rotational transform r, the two-dimensional

map (11) and (12) can be transformed to the separatrix

map as applied to a toroidal divertor system[3]. It can

also be transformed to the standard map[4, 5], and to

the one-dimensional circle map[6].

3. Mapping and Two DimensionalGraphics
Applying simple equations (1L) and (12), we car-

ried out mapping (x,,O^)-(x*t,?nt) many times by

computer. First we tested mappings for magnetic field

line orbits without dissipation. A result is presented in

Fig.la for 20 orbits in the /:L configuration. In high

temperature plasmas in strong magnetic field, the dissi-

pation coefficient co is very small. For R:120 cm,

a:20 cm, T:400 eV, B:5 KG and n:1013 cm-3, we

have co - 10-7. For higher density with lower tempera-

ture plasmas in lower magnetic field, the coefficient

may increase upto 10-5. Furthermore, if we take into

account an anomalous diffusion effect, it may be larger

by two order of magnitude. We assume, therefore, the

range of dissipation coefficient, coS10-3 Even this

small range of the dissipation effect, behavior of orbit

(3)

(4)

(6)

(7)

(8)

(10)

where the first and second terms in Eqs.(9) and (10)
represent the helical field and particle drift contribu-
tions, respectively.

Substitution of Eq.(6) into the first term of Eq.(9)
may yield K sin /0" with K : Rh,/B,. If we assume a

parabolic profile for the density: n(x): n"(l--f), the

second dissipative term may be approximated by c6 x
with co : - 4nRD"(L*r)/ dv. and D. being the classi-

cal diffusion coefficient at the center.r:0. Usinq these

,bA- .dzLe:frdz*!(vu*r")fi,
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Fig. 1 Plot of 20000 (20 orbits) points mapping in helical systems with /= 1. K=0.2, s =1 , and r2.123.(a): area preserving case
(co=0), (b): dissipative case with co=-0.0005.

given by mappings changes significantly. An example is
shown in Fig.1(b) for the same orbits as in Fig.l(a)
with co:-9.9005. In the dissipative case, orbits fill de-
formed annular region with certain thickness, which
looks stochastic. This also indicates that an area pres-
erving mappings with very small (0.05%) error in the
Jacobian J changes the orbit structure from Fig.l(a) to
Fig.1(b).

Whether orbits are stochastic or regular is ex-
tremely important in evaluation of plasma and thermal
transport coefficients[7]. We, therefore, examined care-
fully the stability of such dissipative orbits by evaluating
the Lyapunov exponent and also Fourier spectra. We
evaluated the j-th component of the Lyapunov expo-
nent oj for the two dimensional map by

or: f1g ln l,iil (13)

where ,1,, is the eigenvalue of the n-product of the Jaco-
bian matrix:

J, : J(x,, 0,[(*,_r, 0,-r) ... J(xr, 0r). (14)

Since the sum of Lyapunov exponents is equal to
the area concentration rate Ao in the two dimensional
dissipative map, o,*or:A"[5], when one component
o, is evaluated, the other o2 is given by this relation. In
the area preserving map, Ao is zero and or:-or. In this
case, the unstable component is o, > 0. that is the orbit
is stable only when o1:0 or marginally stable. When
co> 0 (n' > 0), J < 1 and the dissipative term is stabiliz-
ing, while for co(0 (n'<0), J> 1 and it is destabilizing.
For both cases, we use the term "dissipative". Even in
the unstable case, co ( 0, we found that most orbits stay
in certain annular region.

Since the stability of each orbit depends on many
parameters such as helical amplitude K, shear param-
eter s, the initial position in the helical configuration
and so on, in order to examine the global stability char-
acteristics of a helical configuration, we must test the
stability as many orbits as possible in the system. We
evaluated the unstable component of the Lyapunov ex-
ponent o, for 280 x 280 orbits with different initial po-
sitions, which are presented by a two dimensional gra-
phics as shown in Fig.2(a) for the area preserving case.

In the two-dimensional graphics, the value of
Lyapunov exponent o, is shown by light and shade, i,e.,
the dark point means that o, is very close to zero or the
orbit is stable, the white point means that o, is largest
or orbit is most unstable, and the gray point means the
intermediate unstable orbit. The same two-dimensional
graphics is presented for the case of dissipative case in
Fig.2(b). As compared with the area preserving case in
Fig.2(a), the global stability characteristics of the dissi-
pative orbits change little, although the phase portrait
of Poincare mappings in the.dissipative case show signi-
ficant difference as seen in Fig. 2. We can see many
well behaved (black) KAM surfaces in the both cases.

In order to examine the mode locking phenome-
non, we also evaluated the dressed winding number p
defined by

1p: Fg ;@,- oo)

When we plot p as a function of l, Devil's staircase
appears, i.e., the mode locking phenomenon is ob-
served at the rational surfaces as in the circle map[6].
Finally we calculated the frequency power spectrum for
drift orbits by the fast Fourier transform technique, and
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observed the 1/f-noise spectrum for the dissipative case

in the /:1 helical configuration.

4. Gonclusion
Making use of a simple mapping model based on

Ohm's law, the effect of dissipation on orbit mapping is

studied, and found that the orbit does not tend to a

strange attractor in the small range of dissipation,

0 ( co ( 10-3. As compared with the area preserving

case, however, the orbit change significantly, i.e., the

mapping points fill annular region with certain thick-

ness. Most of such orbit is found to be not stochastic.

The two-dimensional graphics based on the Lyapunov

exponent for 280 X 280 orbits shows little difference in

the global stability characteristics as compared with the

area preserving case, although each mapping result is

significantly different. From these results, one may con-

clude that the mapping method is not suitable to
examine the orbit stochasticity particularly in the dissi-

pative case.
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Fig.2 Two dimensional graphicses of Lyapunov exponent for 280x280 different initial positions in helical configurations

with /=1, K=0.2, t=2.123 and s=1. (a): area preserving case (co=0), (b): dissipative case with ca=-0.0005.
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