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1. Introduction
In most magnetically confined plasmas, observed

particle and heat fluxes are dominated by anomalous
transport [1]. The anomalous transport is considered to
be due to turbulent fluctuations driven by various
plasma instabilities. Recently, as a means to the con_
finement improvement such as H-modes [2] and inter_
nal transport barriers [3] found in tokamaks, turbulence
suppression by background sheared flows (or sheared
radial electric fields) has been attracting considerable
attention. In this work, we investigate effects of toroidal
flow shear on ion-temperature-gradient (ITG) driven
modes [4, 5, 6,71, which are micro-instabilities causing
the anomalous transport in a core plasma. We consider
a toroidally rotating axisymmetric system, in which the
magnetic field and the toroidal flow are written as B:
Ne + VC x VV and Vo: VoE: -Rc@<Do/a\gi,
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respectively. Here, 0 and f denote the poloidal and
toroidal angles, respectively, and V represents the
poloidal flux. The background electrostatic potential is
denoted by @0.

By the ballooning mode representation for toroi_
dally rotating system [8, 9], an arbitrary fluctuation
field Fis written in the WKB (or eikonal) form as

:_I'(r, 0, (, t): F(r, 0, tl exp[iS(r, 0, E, t)l (1)

where the eikonal S satisfies B. V,S : 0, and (0/ dt *
%.V)S: 0. Then, for a toroidal mode number n, the
eikonal S is given by S : -" lE - qe)e + Ie*@)aq _
VEtf where Ve : Vo/ R : -cOeo/ OV represents the
toroidal angular velocity and lOuo@)dq appears as an
integral constant. The safety factor q is also available
for a radial coordinate instead of r. The perpendicular
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wavenumber vector is given bY

ftr = VS : -nlve - qve+ {4(r) - eYql' (z)

We should note that the radial wavenumber component

contains time dependence through the time-dependent

ballooning angle defined bY

ot(l\ = ooo- @ve / oq)t ' (3)

In the next section, the kinetic integral ITG mode equa-

tion for the toroidally rotating system is derived by

using the ballooning representation.

2. Kinetic ITG Mode Equation
Here, we assume that normalized fluctuating quan-

tities and their characteristic wavenumbers^ and fre-

quencies obey the gyrokinetic ordering: f^/f,- e,(/

T^- k/ kr- (O/ dt + V''V)/Q^- p^/ L where the sub-

script a denotes the particle species, and the ordering

parameter p,/ L is given by the ratio of the thermal gy-

roradius p^ = vru/C2^ lvr^ = (27^/ mr)1/2: the thermal

velocity, {2" = e'B/(m"c): the gyrofrequency] to the

equilibrium scale length L. The fluctuating distribution

function is divided into adiabatic and non-adiabatic

parts as j,@r) : -7,*e,$1ter1/T^ + fi^1kr1eit^<*s

whereL"(k.): kL'O/xb)/a,(y' = v - Iz6)'The

gyrokinetic equation for the toroidally rotating system

[10, 11] with the large aspect ratio R/r >> 1 is written

in the linear and collisionless form as

[(zo=+ 
,i) 4*1+ ,(o.t + ,r,")l h^1e, t1

I nq 00'0t I

: n,r,@lnL* * *,* i(au +,*;l (4) <ot

where c : ktv'L/{2, represents the finite gyroradius

effect, a6 : kL' Vo: -nVe is the Doppler shift due to

the toroidal rotation, o)sa : Eoo)q^Q4/ T^)l)(v' t1'? +
(Izo + vl,)21[cose + fr1e - 4(4] sinal is the magnetic

(VB and curvature) drift frequency, and c)*r" : @*"[1

t q,{m"(v')2 / rr^ - Zi - Qtt"v' r/ T^)(L^d Vo/ dr)l I o*" :
t<ncT^/(e^B Zo): the diamagnetic drift frequency, Lo:
-(dln n/dr)-r: the density gradient scale length]. In Eq'

(4), the differential operator 0/ 00 is taken along the

magnetic field line. Note that the effect of the toroidal

flow shear dVn/dr is included in a6" through 0(t) [see

eC. (3)l and in ar*r".

In order to obtain a closed system of linear equa-

tions, we use the gyrokinetic equation (4) for the ions

(a : i), the Boltzmann relation for the electrons (a :
e\, and the charge neutrality: the latter two conditions

are written as

Io'ri: i,: "": nole$/ r"1 (s)

Then. the linear behavior of the ITG mode is described

by Eqs. (4) and (5). The main destabilizing sources of

the ITG mode are given from the ion temperature gra-

dient denoted by qi = dln [/dln n in o4r, and the

magnetic curvature included in arot.

In the case of no rotation (% : 0)' we have flr(f)
: 0no from Eq. (3) and no explicit temporal depend-

ence appears in the linear coefficients of Eqs' (a) and

(5). Thus, we can do Fourier transform easily with re-

spect to the time and replace 0/ ltby -iar' Then, Eqs'

(4) and (5) reduce to the eigenvalue problem with ar as

a complex-valued eigenfrequency. Romanelli [5] and

Dong et a/. [6] solved this problem to obtain the kinetic

dispersion relation of the ITG mode for I/o : 0 and Q
: 0. However, when the toroidal flow shear exists, Eqs'

(4) and (5) should be solved as an initial value problem

because of the explicit temporal dependence of the bal-

looning angle 0(/)' In order to solve them more easily,

we here assume that the temporal variation of 0o(t) is

much slower than the characteristic frequency of the

mode observed in the rotating ftame: )VE/ 09- Vo/

(Rq) << @/at + ia")- r*, We write the temporal

dependence of the fluctuations as 0Q) * exp(-io+t - i

I @(t)dt) ri14 wtrere a(t)- a*. >> (da(t)/dt)/ a(t)-
(dE(t)/dt)/Qo- vo/{]Rd. Then, @(t): a)[0'(r)]' and

q1t1 : $1et-1t11 are regarded as a pair of an eigenvalue

and an eigenfunction which depend on the time

through go(r). The stability of the mode should be

judged from the average growth rate defined bY /""":
liml-p r" II y0 dt: (zxq't I&" v(4t) dQ where

y(t): rm o\t).
Using the approximation described above, we ob-

tained from Eqs. (a) and (5) the integral ITG mode

equation which is given bY

I : t:rrK(k' k)o@l (6)

with

(' . +) otr,t:

"(+*11r.(k,ki)

K(k, k ) : - i l' _,.,0, fffi "$-D'z 
/ a)'

"lt"+ t -]n,+\'(k--,' + th
I kzr + k'1 krk', i, \ 4q(k - k')

l' 2(I * a)4 ' (l * a)4 lol eosut*,r
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where ze : T"/Ti, 7: (o*"r)2(Sen/q)2/4a, (d - q) :
k/3h,(0' - dJ: k'/31e", a: l* i2ep;rar*"2[(,i* 1)
(sind- sin0') - 3{(A- Q) cos e- @,- 0) cosl'}l/
@ - e),l0 : Io(kft'J[(I + a)r"]), k21 : kA + E,
and k'2, : kA + k'2. Here, the wavenumber variables ftr,
k, and k' are normalized by p;t (A : JTTJn./A).
Note that the kernel defined by Eq. (7) contains the
flow shear effects through the explicit term (c dVo/dr)
and 4 : eko - (AVE/ aq)t. If we put Zo : dVo/dr: O,

the integral ITG mode equation (6) with the kernel (7)
reduces to the same one as given by Dong et al. 16l. ln
the next section, Eq. (6) is numerically solved to obtain
the growth rate and the eigenfunction of the ITG mode.

3. NumericalResults
The normalized growth rates y/ a*" obtained by

numerically solving eq. (6) with Eq. (7\ are shown in
Fig. 1 (a) and (b) for q.:2, h:0.75, en:0.2, q:2,
T"/Tr:1., and 3: rdlnq/dr: 1. Figure 1(a) shows
the normalized gron'th rate as a function of the nor-
malized toroidal flow shear (L"/ L)(Vo/ c") [c" =
(27"/m1)t/2, Lz = -Vo/(dVo/dr)l for e : 0. It is
found that, when the ballooning angle is fixed as 0u :
0, the growth rate increases with increasing the toroidal
flow shear. This behavior of the growth rate is similar to
the destabilization of the quasitoroidal ITG mode due
to the parallel flow shear [7]. In Eq. (4) where the large
aspect ratio approximation is used, the perpendicular
flow component of the toroidal flow is of O(r/R) of its
parallel component and is neglected. Thus, the toroidal
flow shear dependence of the toroidal ITG mode for go

: 0 shows the similar tendency to the parallel flow
shear dependence of the quasitoroidal ITG mode. If the
perpendicular component of the toroidal flow is taken
into account, the growth rate is expected to be reduced
due to the perpendicular flow shear stabilization [7].
For the case of Fig. I (a), the dependence of the real
frequency of the toroidal flow shear is weaker than that
of the growth rate [(a;r - atr)/ a"*: -0.41 for (L"/
L")(Vo/ c") : 0 and -0.48 for (L^/ L")(Vo/ c") : 1.51.
For the same case, the eigenfunction is localized in the
bad curvature region around 0:0 (d:0 corresponds
to the outermost point in the toroid) while the toroidal
flow shear makes the eigenfunction asymmetric in d.

When the flow shear exists, the gowth rate and
real frequency are functions of the time through e(t)
= 0,.o(4.t - @Ve / )q)t. Figure 1 (b) shows the growth
rate as a tunction of 4(4 for dVo/dr : -Vo/ LE - 0
where the other parameters are the same as in Fig. 1

(a). We find that the growth rate approaches to zero at

QQ)= n/2 and that the ITG mode is stabilized for

ok-o (")

o.2 0.4 0.6 0.8 1 1.2

(L /L)N /c\-n E-- O s-

(b)

onl2n
ek(t)

Fig. 1 The normalized groMh rate yl a"* of the ITG mode
as a function of the normalized toroidal flow snear
(\/l*l(Vo/c"ltor 0r= 0 (a) and as a function of Ou(f)
tor dVoldr= -VJ1- 0 (b). Here 4t=2, ke = 0.75, e. =
0.2, q= 2, f./7,= 1, and .3= rdln qldr= 1.

fluf) > n/2.Here the growth rate for the stable case is
not shown and we need to improve our numerical code
to calculate the negative growth rate. Figure 2 shows
the spatial structure of the eigenfunction fie, 0, l)
corresponding to the case of 4(4 : 0.4n in Fig. 1 (b),
which is obtained by the ballooning transform of $1*1.
The eigenfunction is localized around e= ek:0.42 but
it is partly contained in the good curvature region
l0l> n/2, which causes the reduction of the growth
rate. Thus, with changing the ballooning angle du(r), the
eigenfunction moves poloidally along the magnetic field
line and the average growth rate yu,.: f y[eu@]d,eue)/
2nis expected to be significantly reduced.

4. Conclusion
In this work, effects of the toroidal flow shear on

the toroidal ITG modes are studied by numerically sol-
ving the kinetic integral solution. When the toroidal
flow shear exists, the ballooning angle depends on the
time as 4(4 : 4ko - (aVE/ aq)r. Then, the growth rate

o.5

o
a 0.3

>- o.2

0.1

(I)

A 0.'l

-0. 1
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Fig.2 The spatial structure of the eigenfunction OV, 0, El

corresponding to the case of ar(f) = 0.42 in Fig. 1 (b).

and real frequency of the modes also depend on the

time through the ballooning angle gn(t). For 9o(4 : 0

fixed at the bad curvature region, the growth rate in-

creases as the toroidal flow shear increases. The poloi-

dal symmetry of the mode structure is broken by the

flow shear. As 0(r) increases, the mode structure

moves from the bad to good curvature region. For 9u(r)

) n/2, the mode is stabilized. The significant reduction

of the average growth rate yaye: fylQQ)laeuQ)/2n is

expected especially for weak toroidal flow shear. Here,

because of the large aspect ratio approximation, the

perpendicular flow component of the toroidal flow is
neglected and the toroidal flow shear for 0o:9 tlto*t
similar effects to the parallel flow shear destabilization.

The perpendicular component of the toroidal flow

shear, if included, can reduce the growth rate. How-

ever, in this paper, the stabilizing effect by the toroidal

flow shear through the rotating ballooning angle is

more emphasized. Combined effects of the (parallel

and perpendicular) shear flows, the time-dependent

ballooning angle, and the negative magnetic shear are

to be studied as a future task. Also, for stellarators with

quasi-symmetry, the sheared flow in the symmetric di-

rection, which can be produced more easily than in the

other directions, is expected to stabilize microinsta-

bilities like the ITG mode.
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