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Abstract
The method to construct the generalized magnetic coordinate system is presented, which describe

the magnetic field with and $dthout magnetic surfaces. The method is applied to a simple analytic field.
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1. Introduction
The magnetic coordinatesfL,2l arc widely used

tools in the study of the MHD equilibrium and stability
in the toroidal plasma, as well as the kinetic equations.
The magnetic coordinates, or the flux coordinates, are
closely related to the existence of the magnetic surface.

Unfortunately, the good magnetic surfaces exist
only in the limited region of torus and even inside the
outermost magnetic surface there might exist compli-
cated island structure. In such cases, the utilization of
the conventional magnetic flux coordinates is not ex-
pected. Some efforts to generalize the flux coordinates
to general magnetic configuration are reported[3].

The Generalized Magnetic Coordinates (GMC)
are the new one to supplement the flux coordinates sys-
tem adequate to treat the general magnetic configura-
tions. In GMC (6, rl,E) the magnetic field is expressed
in the form

B : Y V(E,rt, e) x V E + HE(E,rt)V g x V q. (1)

When the good magnetic surface exists, rlt
becomes independent of ( and W(€,q): const. is the
magnetic surface. The f-dependent part of V corre-
sponds to the destruction of the magnetic surface.

Such a coordinate system is introduced in Ref.[4],
and it is shown that it exists even in the outer region of
the last closed surface. In this paper the general method
to obtain the such coordinates is presented; and the
method is applied for the simple magnetic field.

2. Construction of GMG
We shall consider a curvilinear coordinate system

(E,rt,E), I being the angle variable corresponding to
the toroidal direction. The magnetic induction densities,
the product of the contravariant component of the
magnetic field multiplied by Jacobian JE, can be ex-
pressed in terms of the vector potential as

HE:yi -9L u,:oA, -hory ae' ae aE '

rf r 0A, 0A,n':-;='-=-.oE, 04

We shall introduce the notations

(2)

A=feaClfae, A=A-A. (3)
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The GMC is characterized as

1) Ile does not depend on g,

2) The variation of A, in 6 direction is minimal.

These two conditions are represented as

$la'|'ae:0, afll,l'or:0.

For simplicity we introduce the vector-like notations;

i.e., we put

H= (HE,Hn,He), A= (A6,AryA1),

er(0,0,1), x = (E,q,E),

grad =

and treat them as if they are 3-dimensional vectors.

If we introduce a time-like parameter z and con-

sider the continuous path from an initial state to the

GMC

x: x(t): x(xs,r). (6)

The change of the vector potential is related to the

change of the coordinates by the relations

-gradu+i+ *xH:o, (7)

and usatisfies the relation

H'gradu: H'A. (8)

The dot denotes the derivative with respect to 7.

It can be shown that if the transformation is

chosen as

1 r- r*: oH - i* "tx I A + gradvl, (9)
H\-r

with z satisfying equation

(H' Y\2v - (I1' V)(II' A) : 0,

the coordinates approach to GMC when z * -. The

parameter o may be chosen by the third requirement

for the coordinates[5]. In the simple case we can

choose o:0.

3. NumericalExample
In order to check the algorithm given above, a

computer code is written. The following magnetic field

is used as a test field.
The model magnetic field is ABC (Arnol'd-

BeltramiChildress) magnetic field in the (a y, z) Carte-

sian coordinates added constant magnetic field in the

direction of e as follows.

Generalized Magnetic Coordinates

B,: bcos()"Y) * csin(.l2)

Br: ccos(L2) * asin('?'r)

B,: acos()'x) * bsin(lY) * Bo

with ,,, : 2n, (a: 0.2, b: 0.L, c:0.6). This magnetic
(4) 

field is periodic in the directions of x, !, Z' Bs is added

(10)

so that B, ) O.

The (x,y,z) is expanded into Fourier series in

terms of (8,ry,E) as follows,

x: E+ | .6,^,osin).(l$+ mrl+ ne +I)
l,m,n, k

Y: rl+ | .q,^,psin)'(l$+ mq+ ne +to)
l,m'n,k

,.

z: E* I l,^^osinl(l$* mr1* nE+;). (12)
l,m,n, k

The index k (k:0,1) distinguishes sine from cosine'

The scalar function y is also expanded by Fourier

series.

First, we set B0: 1.0, - 1 I l,m,n < 1. Figure 1

shows the GMC mesh of 8,4 : const. at equal intervals

on the z : 0, O.25,0.5, 0.75 plane in the Cartesian co-

ordinates. The Poincar6 map of magnetic surfaces is

also overlapped in Fig.1. Hete (: z.

The deformation of the coordinate mesh follows

that of the magnetic surface; for example, the O-point

locates at the same point of (6,ri) regardless of f. It is
easily seen even with the small number of the Fourier

mode, because the variation of the magnetic field is

small in this case.

Next, the constant Bo is lowered to Bo : 0.5, so

that the variation of the field in z direction is increased.

The agreement between the coordinate mesh and the

magnetic surface is not good with the Fourier mode -1
< l"m,n 31. When the number of Fourier mode is in-

creased to include the mode -2 < l,m,n 32, the situ-

ation is improved, as shown_ in Figure 2.

The convergence of I/ is shown in Figure 3. The

error of Ii remains finite even if the calculation is it-

erated more than 10. It should be noted that the error

of fiE, fin naturally contains the part from the place

where nested magnetic surface does not exist' On the

other hand. the error of f g is the finite truncation error

for the most part. Because the error o1 ;i€, fr is not

very different from the error of ile, the errors of fr are

caused by the smallness of number of Fourier mode

than the breaking of magnetic surfaces. The number of
Fourier mode is very important in view of accuracy of

coordinates especially in the complicated magnetic field
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such as the case of 4 : 0.5.

4. Gonclusion
The general method to construct a GMC is applied

to the simple magnetic field expressed in an analytic

form. When the variation of the magnetic field is small'

the good magnetic coordinates are obtained even in the

small number of Fourier mode. The poor convergence

in the presented result is reduced to the use of the small

number of the Fourier mode. We can expect that the

situations will be improved by using the sufficient num-

ber of Fourier mode'

In the general magnetic configuration of interest

the periodic condition in three dimension cannot be

used. The region of the existence of the GMC is also

Iimited. which is not known before the calculation' The

improvement of method is required in order to treat the

general case, but it is left to the future task'

Fig. 3 convergence of A(Logarithm of square norm of H ys. iteration number).

(a) 4 = 1.0, Fourier mode from -1 to 1'

(b) Bo = 1.0, Fourier mode from -2to2'
(c) 8o = 0.5, Fourier mode from -1 to 1'

(d) 8; = 0.5, Fourier mode from -2to 2'
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