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Abstract
Several versions of Monte Carlo codes based on d/ methods are under development for studying

transport in nonaxisymmetric toroidal plasmas. This paper reports initial progress of the development.

The d/simulations ofneoclassical diffusion and bootstrap current in a stellarator are presented together

with the results of benchmark using a tokamak geometry. Comparisons with conventional Monte Carlo

methods are also made.
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1. Introduction
The so-called d/methods are numerical techniques

which become important in particle simulation of
plasma instabilities and turbulence. Recently similar
techniques have been applied successfully also to neo-

classical transport simulations of tokamaks [1, 2]. Since

stellarators have much complex geometry often hard to
treat analytically, application of these new techniques to
stellarators would be attractive. In this work. we

examine applicability of d/ algorithms to three-dimen-

sional stellarator configurations. The longer-range goal

of this work is to develop efficient computational tools

capable of investigating transport related issues in non-

axisymmetric toroidal plasmas.

2. df Schemes
Here, we briefly outline the d/schemes: The drift-

kinetic equation for a guiding center distribution func-

tion (in the usual notations) is given by

af^af2** (u,,h * ya).Yf * a,,d;",: r<n (1)
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Collision operator Cused at present is of Lorentz type.

uA Ac:;; (1- A')- (2)- z dA' 'aL
with v the collision frequency and with ),.(: utt/ u) the
pitch of particles.

In d/methods, distribution function is divided into
a known equilibrium and a perturbation (i.e., dfl. Put-

ting f:fo*6f, where fi is a local Maxwellian, the ze-

roth-order equation becomes

af^ ^ af^

f;+ub.vfi+q-Ar,:C(fo)
which is trivially satisfied by the Maxwellian /r.
first-order equation can be written as

ddf . i Adf
Z; + \u1D + ovd)' v oI + at, A;

- C(6f\ : va'Kfo

(3)

The

(4)

The RHS represents the source term that causes distor-
tion of the distribution function due to the radial drift.
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Tokamak Benchmark (Real Space Code)
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Fig. 1 D versus r/ for the model tokamak (e,=0.05). Solid
and open circles represent D from the linearized
and nonlinear dlr schemes; crosses represent D
from traditional Monte Carlo method.

with r the inverse of density gradient scale length. Two
types of d/ schemes, Dimits-ke scheme (.,partially
linearized algorithm" [3]) and parker-Lee scheme
("nonlinear characteristic method" [4]), have been im-
plemented in our codes. In Eq.(a) (and in the follow-
ing), o:0 for the "linearized" scheme and o: L for the
"nonlinear" scheme. By introducing the parameter q
one can conveniently realize the two d/ schemes in a
single code.

Characteristics (trajectories) of 1th markers are
solved in conjunction with equations for time-varying
weights a.r, of markers. Time evolution of weights is de-
scribed by

0.001 0.01 o.r 1 I o

Collision Frequency

Fig.2 D versus 7 for the model stellarator and for the
equivalent tokamak (e, = 0.0S). Solid and open circles
represent D obtained from the linearized and the
nonlinear dfschemes.

desired quantities such as difftrsion flux, bootstrap cur-
rent 6, and Pfirsch-Schltiter current ,7".r. Since markers
are sampled only form the perturbed part which di-
rectly contributes to the transport, one expects reduc-
tion of sampling noise or equivalently computational
cost, which has been the major reason that limits the
usefulness of Monte Carlo simulations.

3. Simulation Results
Two versions of d/codes, one in real-space coordi-

nates and the other in magnetic coordinates, have been
written. For the purpose of benchmark, simple tokamak
geometry was first examined [5] using the real-space
version. Figure 1 shows the diffusion coefficient D for
electrons in the model tokamak obtained with the ,,li-

nearized" and "nonlinear" 6f schemes as well as with
the traditional, test particle random walk procedures.
Difftrsion coefficients are normalized by the plateau
value. In the collisional and the collisionless limits. re-
sults for D tend to theoretical linear dependencies on y.

The three different methods gave results that are in
excellent agreement. In addition, Fig.1. agrees with pre-
vious work by Lotz-Ntihrenberg [6] where traditional
Monte Carlo method is used to measure local difftrsion
coefficient in a similar tokamak model.

Having established benchmark using the real-space
code, we applied the second, magnetic coordinates
code to a model stellarator. In this version of the d/
codes, markers are pushed using Hamiltonian guiding-

Y:O- oot)vo.rc (s)

As the initial condition we put @F0 because

f(t:O):fo. A fourth order Runge-Kutta formula is
used to integrate the system of equations. The codes
are vectorized with index 7 of markers so as to exploit
near maximum efficiency of vector processors.

The distribution function is expressed as

f :fo+ 6f:L(L+ a)6(x- xi?)\ (6)

where delta tunction, 6(X - 4(r)), is a five-dimen-
sional guiding center Klimontovich density which
evolves along the trajectories of markers. Taking appro-
priate moment of dl rather than of total-f, one obtains

Delta-f simulation (in Boozer coordinates)
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Fig.3 Bootstrap current versus collision times in the low collisionality regime (l=O'08).70 is normalized by axisymmetric

collisionless value 7o(0).
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center equations which can be derived from drift La-

grangran [7]. A model nonaxisymmetric B-field spec-

tnrm for a stellarator used in this paper is:

B(rP, 0, O) : r - €, cos0 * e6cos(00 - mO (7)
Bo

where (r/, 0, $ are Boozer's coordinates. Parameters

specified are l:2, m:19; amplitudes €r, €h, and the

rotational transform r are chosen approximately similar

to the values of Heliotron E.

Figure 2 shows the diffusion coefficient D for the

model nonaxisymmetric B-field. Also shown is equiva-

lent tokamak's D obtained simply by omitting the eo

term from the 8-field spectrum. Note that D for en:O

reproduced the earlier benchmarks with the real-space

version (Fig. 1). For nonzero en, D becomes larger than

that of the axisymmetric counterpart in the plateau

regime, and shows 1/r dependence in the low collision-

ality regime.

Figure 3 shows the time evolution of ion bootstrap

current 7lo for (i) axisymmetric (.0:0), (ii) nonaxisym-

metric, and (iii) helically symmetric (e,:0) configura-

tions. After transient periods for about 3-5 collision

times, 7o sigrals show stationary phase. Although sub-

stantial fluctuation sometimes persists in the stationary

phase (especially in nonaxisymmetric runs), time aver-

age of 7o over the stationary phase usually gives reliable

answers. The low noise feature of the d/ schemes may

be understood form Fig. 4, where time averaged 7o's

evaluated from total-/and d/are compared. The con-

ventional total-/scheme yields noise level greater than

unity; therefore, it allows no accurate evaluation of 7o.

r00
TIME

Fig.4 Bootstrap current (time averaged) versus collision times. Highly oscillating curve was evaluated from total-f while
heavy solid curve was evaluated from df Calculated for the nonaxisymmetric field in the collisional regime 0r =20.1l,.
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Fig. 5 Bootstrap current (time averaged) versus f .

Squares (axisymmetric field), circles (nonaxisym-
metric field), and triangles (helically symmetric
field). Solid line depicts tokamak scaling by Sasi-
nowski and Boozer [2].

The d/scheme, by contrast, lelds much less noise with
the same number of markers (typically 1000) used in
our simulations.

Figure 5 summarizes ff l2vRo/(el/2n,o)) de-
pendence of io. Axisymmetric results roughly fit to to-
kamak scaling proposed in Ref.[2]. We note the rever-
sal of 7o in the helically symmetric runs. The bootstrap
current,6 in nonaxisymmetric field lies in between those
in the axisymmetric and helically symmetric ones. Boot-
strap current is nearly canceled in the plateau regime
and slightly opposite in more collisional regime. For the
Heliotron E like parameters studied here, magnitude of
collisionless 7i in the helically symmetric limit is smaller
than that of equivalent tokamak by a factor, (eo/ er)1/2
. ld / (tl - m)l - O.07 , and is consistent with the analy-

tical estimate.

Finally, Pfirsch-Schliiter currents fr.., calculation
of which seryes as useful diagnostics of the internal
consistency of simulation codes, were evaluated using
the d/ methods; 7".r. due to toroidicity, et, and gener-
alized 7,, due to helical ripple, en, both agreed with
theoretical estimates.

4. Summary
Prototypes of d/ Monte Carlo simulation codes

were developed for neoclassical transport studies of
stellarators. The simulation results from real-space ver_
sion as well as magnetic coordinates version of the d/
codes were benchmarked with analytical and previous
numerical results. Evaluated diffusion coefficient, boot_
strap current, and Pfirsch-Schltiter current for a model
stellarator showed theoretically expected transport
properties. So far, the d/ codes run for single species
(ions or electrons). Future directions of this work will
be exploration of wider class of stellarators and im-
provements in collision operator, in particular incorpor_
ation of momentum-conserving term that is required
for multi-species transport simulations.
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