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Abstract
The magnetic field lines of helical devices behave like a dynamic system with periodic external

forces. Their properties are studied through calculation of Lyapunov numbers and fractal dimensions.
The position of the outermost magnetic surface corresponds to onset of the field line chaos (that is the
positive Lyapunov number).
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1. lntroduction
The outermost magrretic surface (OMS), which

defines the boundary between nested magnetic surfaces

and the separatrix layer or so-called "divertor trace", is
one of the key parameters for the coil winding of the

helical experimental devices. Many Simulation codes

for plasma equilibrium and stability analysis need infor-
mations of OMS. but there is no common criterion to
find its location. It has been studied mainly by means of
the Poincare map of vacuum field lines. Quantitative
comparison for the different coil geometry, however, is

difficult with this method,
In this work, we restrict our attention to the !, : 2

heliotron/torsatron coil geometry. Field line data are

obtained mainly with the KMAGN code. Original code

has been modified to trace the field line not along the

toroidal direction but along the line itself. We trace

field lines numerically with the length of several thou-
sands meter. If we start to trace the field lines inside the
OMS, they move mainly in the toroidal direction and

several thousands punctured points on the toroidal
cross section form one smooth curve. But, outside

OMS. field lines move in the radial direction or in the

poloidal direction, sometimes move backwards, and at

last escape from our calculation region, which extends
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(3 - 5) X "coil minor radius" from the minor axis. In
this case, field lines are stretched, folded, and nested

many times[l] and randomly scattered punctured

points are obtained. In other words, field lines have the
chaotic property and we can use the determination
tools of chaos onset to define the OMS itself.

In the spction 2, we calculate Lyapunov number to
detect the onset of fields line chaos. In the section 3, we

calculate the fractal dimension. The section 4 is the
conclusion.

2. Lyapunov Number
One of most promising tools for detecting the

onset of chaos is the Lyapunov number of the recon-

structed attractor. Various algorithm to calculate the

Lyapunov number has been proposed [2, 3]. Wolfs
method counts the expansion of the distance between

the reference orbit in the phase space and neighbor-

hood point [2]. After about 1,000 step along the orbit,
usually, maximum Lyapunov number (1,) converges to
constant value. On the contrary, Sano's group calcu-

lates the linear operator matrix acting on tangent vec-

tors, with the least-square method [3]. This procedure

gives us all Lyapunov numbers (positive, zero, and neg-

ative one), but much more data (about 5 times larger
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than for Wolfs procedure) is needed to converge

Lyapunov numbers. So, in this section, we present re-

sults with Wolfs one.

In the Figure 1, examples of the Wolfs algorithm

calculation are shown for three field lines with the dif-

ferent start points. One starts inside of OMS (R :
2.a80[m]) and its Lyapunov number converges to zero

rapidly in a few hundreds step. Another line starts out-

side of OMS (R : 2.a95@l). Lyapunov number

becomes large positive value and converges to - 6.8 in
about 500 step. Between these two cases, Lyapunov

number initially shows a large spike and converges

more slowly to a positive value.

The Lyapunov number profile near OMS is shown

in the Figure 2. For R(2.48[m], non-positive Lyapu-

nov number is obtained and the field line forms mag-

netic surface. Just outside of OMS, there exists natural

island. The minimum value at r: 2.49lml in the figure

corresponds to this island in the "chaos sea". Though

Maximum Lyapunov number

2.445

500 1000 1500

N"t"p

Fig. 1 Convergence of Lyapunov number with Wolf' algo-
rithm. Start position of lines are also shown in the
f igure.
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Fig. 2 Profile of fractal dimention near OMS.
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the origin of another dip (R- 2.a35lml) is not clear

yet, the position of OMS is clearly determined. Be-

tween different coil configurations, the positions of
OMS are distinguished.

3. FractalDimension
There are many different definitions of the "so-

called " fractal dimension. Though almost all definitions

are too difficult to be used with Poincare map data or

time series data, capacity dimension (Do) and correla-

tion dimension (Dt) are relatively easy to calculate. In-

formation dimension (Dr) is also obtained from Lyapu-

nov spectrum [2]. But this is not included in this work.

We divide toroidal cross section into the square

cell with the size of r. Then we count the number N(r)
of cells which contain at least one data point of Poin-

cure map in it. If the data size N of Poincare map is suf-

ficiently large, at the limit r ' 0, N(r) - r-Do. So from
the relation between r and N(r), -Do can be obtained

with the least square method.

In the case of Dr, Grassberger's paper gives us a

calculation method with the correlation integral[4].

t MN
C(r): 

^;-I L H(r- 14-.rjl)
tfrt f j_l i_ |

where H(.r) is the Heaviside step function. (M can be

set much smaller value than the data size N to save the

computational time.) If N is sufficiently large, at the

limit r - 0, C(r)- rD,.

In order to determine Do or D2, the choice of the r
range for the least square fitting is important. Because

of finite data size, N(r) and C(r) at small r become

smaller than the expected powers-law. If we neglect this

fact, Do would be underestimated and Dr would be

overestimated. So correlation dimension D, is preferred

in order to distinguish inside of OMS (D- 1.0) and

outside (D> 1.0).

One example of C(r) is the Figure 3. From the de-

finition, C(r) is expected to saturate to the 1.0 for large

r. But in this case, field line starts on a rational surface

(magnetic surface with rational rotation transform) and

C(r) firstly saturates to the lower value (-0.11) at

r>0.005[m]. (Saturation to 1.0 is omitted in this

figure.) As shown by the dot line, the "apparent" corre-

lation dimension deduced form whole range data

becomes low value (-0.234\. This corresponds to the
fact that the punctured plot of the rational surface does

not form a closed line but consists a few discrete dots.

If the r range is restricted to small value (we watch the

small structure around one island, the solid line in the
figure), correlation dimension becomes 1.119 ( > 1.0).
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Correlation integral for R=2.445[m]
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Fig.3 Correlation integral for the rational surface. De-
duced correlation dimensions are also shown.
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4. Conclusion
We applied two algorithms for Lyapunov numbers

calculation of dynamic systems to magnetic field data
and compared their results. Though Sano's algorithm
gives us all Lyapunov numbers to calculate the informa-
tion dimension Dl, necessary data size is large. On the
contrary, Wolfs algorithm can calculate positive (and
usually only maximum) Lyapunov number but neces-

sary data size is smaller.

The profile of maximum Lyapunov number 11 is

examined. Field lines inside OMS have non-positive Ir.
Outside of OMS, )', is large positive value and shows

the minimum value near natural islands. For different
coil configurations, different )', profiles are obtained
and the positions of OMS are distinguished between

these configurations.
Fractal dimension also has the relation with the

chaotic properties of field line (especially with the exist-

ence of magnetic islands). But when we determine

;a*:, 
,n"t easily suffer from bad effect of data finite-

Acknowledgements
One of the authors (H.M) are grateful to Prof. S.

Kogoshi of Science University of Tokyo for fruitful ad-

vices. We thank Dr. Y. Nakamura of Kyoto University
and Dr. K. Watanabe and Dr. M. Yokoyama of NIFS
for showing the way to use KMAGN code.

References

[1] H.Akao, J. Phys. Soc. Jpn.59, 1633 (1990).

[2] A. Wolf et al., Physica 16D,285 (1985).

[3] M. Sano et al., Phys. Rev. Irtt. 55, 1082 (1985).

[4] P. Grassberger et a/., Phys. Rev. Lett. 50, 346
(1e83).

o.23.+---..,-'

/
t.tss/""

/ a 99'qead6

,..,--'f'

10"2

10-4
10-2t n-4

2.4 2.6

Rlml

Fig.4 Profile of fractal dimention near OMS.

The fractal dimension profile near OMS is shown

in the Figure 4. From fractal theory, D0 must be larger

than Dr. But, as mentioned above, finiteness of data vi-
olates this rule. Because of scattered data, the position

of OMS is not shown as clearly as )rr. Magnetic islands

on rational surfaces (R: 2.445,2.455,2.49O[m] in the
Fig. a) are, however, shown more clearly with fractal
dimension (D< 1.0).
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