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Abstract
The short review of the theoretical results obtained in Kurchatov Institute in the field of helical

magnetic confinement systems and which could be useful at present are given. Some arguments are ad-

duced in favor of the Heliac-type quasisymmetrical systems. The result based on 3-D codes vMEC and

TERPSICHORE is presented, demonstrating rather high ballooning stable (P> - 3'/" in the four-period

slightly comrgated heliac-type system. The way to avoid the locally trapped particles which are respon-

sible for enhanced transport in stellarators, less restrictive than the condition of quasisymmetry is dis-

cussed on the base of "normal" systems having topology of lines B : const' on the magnetic surfaces

like at axial, helical or poloidal symmetry, i.e. without local extremes of B on magnetic surfaces'
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I
1. Introduction

At present we observe a revival of the helical

plasma confinement systems which are directly con-

nected with L. Spitzer invitation of the space-figure-

eight stellarator [1]. In Kurchatov Institute, the theory

of such systems starts in the middle of sixties in connec-

tion with construction of small figure-eight stellarator

consisting of four semi-tori. For calculation of the

plasma shift, the Mercier quasicylindrical orthogonal

coordinate system was used [2]. The Mercier quasiflute

instability was studied in Ref. [3] on a base of curvili-

near flux coordinates with both contravariant and cova-

riant representations of the magnetic field B:

ZnBi - 10, - v' I {8, a I {El'
2nBi:{-v+ OEl0a, J* 0q100, F+ aElAll'

In vector form: 2nB: Vt/x Vg + VO x V9,

and 2nB: M+ FVe- vYatYq,

(thatcorrespondsto 2nA: 
'DV0+ 

We,
B:VxA).

Here /[: (V0 x V6'Ya\'t, J(a), <D(a) are toroidal

current and magnetic flux and F(c), V(a), are poloidal

external cument and magnetic flux, a is a label of the

toroidal magnetic surface, e.g. the normalized radius

a(r) : const, or the value Z(a) inside the magretic

surface, or 1(a) : Y*- v(a) etc' Functions v and E

are nec€ssary to satisfy conditions B 'Y a: 0 and V ' B
: 0. By definition, the rotational transform is t :

@ .vql@ 'vg) : l(a)lo(a): - rI''(a)la@)'

One of useful conclusion of those old researches

was discovering a possibility of the local sufficient sta-

bility criterion for the ideal MHD modes in the case

when there is no net toroidal current [a]. This criterion

is obtained from simple consideration of the potential

energy of the ideal incompressible displacements and

has a form [5]:

ffi_s#A+zkl,'*0,(9-,)]
t kzlY al2 < 0.
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Here A : (a')rt I v', (j . B> : (J, F - F, J\l V'. With_
out the net current J(a) : 0, only the magnetic well
could provide fulfillment of this condition. Besides it is
desirable to have:

- small Pfirsch-Schltiter current (the first term),
- small k2lYal2.

ff. f @) I 0, then the condition J,l > 0 is desirable.
A computational information about the all terms

of sufficient criterion could be useful for better under_
standing the way of confinement system optimization.

The less restrictive sufficient stability criterion,
proposed by D. I_artz et al. [6], takes into account the
bending of the magretic field lines. By neglecting the all
explicitly positive terms in 6W except the first and the
last ones, one obtains from functional dw(f) the next
Lagrangian equation:

B .v(B .v I llv al2) + r(6 : 0.

A finite solution corresponds to instability. At present,
with existing codes it could be useful to analvze this
equation numerically.

2. Ouasisymmetric Systems
Our study of the quasisymmetric (eS) toroidal

system was inspired by J. Ntihrenberg and R. Zille's [7]
discovering a possibility to satisfy condition of quasi-
symmetry, which was proposed by A. Boozer [g] as a
means to avoid the locally trapped particles due to con_
servation of the canonical momentum of the drift par_
ticle. In this case one will have deal with neoclassical
transport like in axisymmetric tokamak. In our first
paper concerning the QS systems [9], it was discovered
a possibility to have th" eS conditions at small number
of periods not only in systems of Helias-type but also of
the Heliac-type systems. Let recall the difference be_
tween these systems.

In Heliac-type systems the magnetic surface cross_
section rotates mainly together with the magnetic axis
principal normal. Thus, being vertically elongated at the
maximum axis curvature, it will be vertically elongated
also at the middle of the system period. This allows to
conserye the favorable D-shape form for stability along
the all period. Because of this we have concentrated on
the Heliac-type systems. In Helias-type systems the
magnetic surface cross-section rotates twice slowlv thus
becomes horizontally elongated at the middle of perioa.

The types of quasisymmetry depend on direction
of the lines B - const. on magrretic surface. They can
go along the torus (*toroidal" quasisymmetry) or
around the magnetic axis (..poloidal,' quasisymmetry).
Near the magnetic axis B: Bol(l - kx) = Bo(l * kp

cos0), where r is directed along the axis principal nor_
mal v. If in Boozer coordinates the line d" : const., 4 :
const. has topology of the line I : const. on magnetic
surface, then the QS condition is:

0Bl0l,:0, B: B(a,0,),

or in invariant form:

(FB+ B x VW).VB:0.
Here F(a) and V\a) are the current and magnetic flux
inside the contour d, : const., d: const. If the poloidal
strip 4: const. ofthe Boozer coordinates (a, go, (n) is
counted from the torus ,.hole", not rotating around the
magnetic axis, then

0,: 0n* NCr,, B: B(a,4 + N6').
It is the case of the quasihelical symmetry. It is natural
to consider the contours fu: const., (n: const, having
the same topology. In this case In: J,: /, (pr,: @":
@.

From .B.V4: B.ye, + NB.Vgh and from co_
variant representation of B it follows:

4:to*N,
V":'!n- NO, 4:4 + N/.

The condition of the poloidal quasisymmetry is

0B 100,- g, B: B(a, l,)
in Boozer coordinates. or

(tB+Bxv@).vB:0
in invariant form. At zero net current, ,f : 0, it is con-
dition of the "isodynamic,' system, where the particles
drift along the magretic axis that leads to the classical
(!) transport. The systems satisfying this condition at k: 0 are known as orthogonal mirror systems. Unfortu_
nately, the term kx: kp cos? in expression for B could
not be excluded at & I 0 (in Boozer coordinates).

In our consideration the form of the magnetic axis
is prescribed. Usually it is taken as a helical line r :
ro(s) on a reference torus. The radius-vector of the ar_
bitrary point is described by r: ro(s) 1- peo,where the
unit vector eo lies in the plane s: const. which is ortho-
gonal to the axis, thus er.Vs : 0. I€t @ is the angle
between the principal normal v and eo, then the metric
of the quasicylindrical coordinate system (p, @, E :
2ns I L) is represented by the expression (see Ref. [ 10] )

dl2 : dpz t p2da2 * 2rcp2Rdadl *
R'[(1 - Kp cos a)2 t rcz p2ldl2 .

71,



Shafranov V. et a/.,

Let the near-axis elliptical magnetic surface cross-

section rotates according to the relation 0": @ + d(g)
: o) + nE + 6G), where Q is counted from the top of

the ellipse. Following C. Mercier [11] we denote its

semiaxis by a exp(-412) and a exp(q l2)' Thus the

equation of the ellipse in parametric form is

p cos ee: 4 exP(- q 12) cos 0!

p sin Q : a exP(412) sin 0f .

As a result we obtain for the linear in /<a term in ex-

pression for B * Bo(1 -f kx):

kx: kp cos(Q - d)
: ka[exP(- 1112) cos d cos 0f

+ exP(q 12) sin d sin 0i ].

Returning to the poloidal variable Of; counted from the

principal normal (thus QS condition to be B : B(o'

0f, )), we get

kx: a(A, cos 0f, * Arsin ol),

where

Ar: k(l){exP(-qlz)cos d'cos(ne + 1)

+ exP(tt 12) sin d ' sin(nf + i)],

Ar: kG){- exP(- q 12) cos d ' sin (n | * i )
-r exP(rl 12\ sin d' cos(nf + f ))'
A1+ A1: k2[exP(-4)'cosz r)

* exp(4)'sin2 dl.

We introduced parameter ,i,(6) for the magnetic field

line to be straight.

The QS conditions require: Ar : const', A, :
const. Using the condition Ar(0) :0, the predictions

of rather high Mercier stable (f) for Heliac-type QS

systems with large number of periods (N > 8) were

done in Ref.[12] which agrees with the later 3-D com-

putations, Ref.[13]. Meanwhile, the 3-D computations

of the ballooning modes have shown (fL to be smaller

than Mercier limit both in Helias{ike and Heliac-like

QS stellarators in contradiction with some analytical

necessary condition of the ballooning modes stability

[14] (based on special probe perturbation [15]):

I * ( p:4\ [u*,.r B? a *("P])' ol2 \B|lll"' tp" I

+1s(?T) ' o'2"\tnat

Spatial-Axis Stellarators

It follows from this criterion that ballooning modes

slowly decreasing along the extended poloidal coordi-

nate, are more stable than the Mercier modes, in sys-

tems with positive shear S: al lt> 0'

Such contradiction was discovered by Cooper'

Hirshman and Lee [16]. They found unstable modes

very localized in the extended poloidal representation'

thus not localized strongly in radial direction' Later, the

ballooning modes of such type were found to restrict

the plasma pressure in a number of modem stellarator

devices and future projects [17, 18], including the he-

liac-like quasi-helically symmetric stellarators, Ref' [ 19]'

To understand a reason of the localized ballooning

modes instability the role of magnetic surface geometry

was investigated in Ref.[20] for conventional stellarator

using the stellarator approximation. The 3D geometry

of the magnetic surfaces and only 2D tokamak-like di-

pole secondary currents were taken into account' It was

shown that only 3D geometrical effects are responsible

for local ballooning modes instability' Up to now, there

is no any analytical description of such kind of balloon-

ing modes. Perhaps, the analysis of the terms in the

local sufficient criterion, and the D- I-nrtz et al' crite-

rion, can help to make the problem more clear'

To overcome the low ballooning stable B-limit it is

to be refused from the condition of the toroidal quasi-

symmetry by adding bumpiness into system' Accord-

ingly a topology of the line B : const' was changed to

poloidal one and rather high Mercier stable (4%) and

ballooning stable (3%) betas were obtained in such

Heliac-type quasi-mirror symmetrical system' For de-

tails see [19].

3. NormalSystems
Under "normal" we mean the toroidal systems in

which the lines B : const. going along the all torus in

toroidal or poloidal direction don't create the islands on

a magnetic surface. In this case there is no local mag-

netic well, no locally trapped particles and correspond-

ing enhanced transport. The formal condition of the

"normality" could be formulated as a necessity of the

straight lines B : const. in the flux coordinate with

straight field lines [21]. In this case one can choose the

coordinate surfaces 0: const. or g : const coinciding

with surfaces B : const' Thus the condition of nor-

mality is as follows.
Toroidal direction:

aBlae:0, B: B(a,0)

in any straight field line flux coordinates' In vector

form:
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{Q + aelaeB + Bx vr)}. vB: 0.

Poloidal direction:

08100:O; B: B(a,l).
In vector form:

(J + aela|)B+ Bx vr)J. vB: 0.

These conditions differ from corresponding con_
ditions of quasisymmetry by presence a free function
g, which obeys to the equation

B'YE-o, <82>v'
21r 

: 
"- - -4", lE '

Transforming coordinates 0, I to the habitual Boozer
ones [5],

IU'0:e-* - ,r'. r:t'- O'- -b <82>V,,t,, s-sa-Z82>V-,9,

one could find

dB 4n2,[sPz
A0 <82> V'

Iuu_ o' (g!ae_aaaq\l
I aa" < 82 > V'\ aoB dEB aE, ao" ) |

0B _ 4I2JEB2
ae <82> v,

t+- Y' (9!g- an acp \l
I a6s <82>v'\ao"aE - aE,ar,I]

where ( 82 > V': F@' - JV.
An additional free function g could provide fulfill_

ment of the normality condition in the whole plasma
volume. In near-axis approximation only one 

"onditionA? + Atr: const. should be tulfilled instead of two
ones A, : const., .A, : const. in the eS case.

Moreover, in contrast to the poloidal quasisym_
metry, the poloidal normality can be satisfied at non_
zero magnetic axis curyature, k * 0. The term kx: kp
cos0 in an expression for g near the magnetic axis
could be canceled in the coordinate systems (a, e*, e*)
with the inclined coordinate surfaces (*: const.:

C: e* * aycos|.

(In Boozer coordinates the linear in a term is im_
possible). In these coordinates

B: B'G)G I kaf cos?)

laB" \: 8o(6*) * ( E y * kfBo 
) 

a cose.

SpatiaFAxis Stellarators

The condition of the normality A: B@, e*) is tulfilled
at

0Bn

a{ y+ kfBo:o.

It follows from this condition that the magnetic axis
curyature should be zero at the extremes of the Bo: k :
0 at ABo I AE: 0.

The poloidal normality seems to open interesting
new possibilities for optimization of the helical mag_
netic systems.
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